




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三篇动力学 理论力学 第10章动量定理 第10章动量定理 从本章开始研究适用于质点系的动力学普遍定理 即动量定理 动量矩定理和动能定理 在大学物理中我们已研究过质点的动力学普遍定理 质点系动力学普遍定理 建立了度量质点系整体运动状态的物理量 质点系的动量 动量矩和动能 与其上作用的力系特征量 主矢 主矩 和功之间的关系 每个定理都具有明显的物理意义 与物理学相比 本章着重讲述定理在工程中的应用 几个有意义的实际问题 动量定理与动量守恒 质心运动定理 应用举例 第10章动量定理 几个有意义的实际问题 偏心转子电动机工作时为什么会左右运动 这种运动有什么规律 会不会上下跳动 几个有意义的实际问题 蹲在磅秤上的人站起来时 磅秤指示数会不会发生的变化 几个有意义的实际问题 台式风扇放置在光滑的台面上的台式风扇工作时 会发生什么现象 几个有意义的实际问题 抽去隔板后 将会发生什么现象 几个有意义的实际问题 动量定理 第10章动量定理 动量定理 质点系的动量 质点系的动量定理 质点系的动量定理的守恒形式 质点的动量 质点质量与质点速度的乘积 动量具有矢量的全部特征 所以动量是矢量 动量定理 动量具有明显的物理意义 它是力的作用效应的一种量度 如 子弹的质量很小 但由于其运动速度很大 故可穿透坚硬的钢板 即将靠岸的轮船 虽速度很慢 但由于质量很大 仍可撞坏用钢筋混凝土筑成的码头 质点系的动量 质点系中所有质点动量的矢量和 称为质点系的动量 质点系的动量是质点系整体运动的基本特征之一 具体计算时可采用其在直角坐标系的投影形式 动量定理 注意到物理学中 质点系质心位矢公式对时间的一阶导数 式中 rC为质点系质心的位矢 vC为质心的速度 m为质点系的总质量 据此 质点系的动量可改写为 质点系的动量 动量定理 这一结果表明 质点系的动量等于质点系的总质量与质心速度的乘积 这相当于将质点系的总质量集中于质心一点的动量 这也表明 质点系的动量描述了质点系质心的运动 动量所描述的并不是质点系运动的全部 因为它不能描述质点系的转动效应 质点系的动量 动量定理与动量守恒 椭圆规机构中 OC AC CB l 滑块A和B的质量均为m 曲柄OC和连杆AB的质量忽略不计 曲柄以等角速度 绕O轴旋转 图示位置时 角度 为任意值 求 图示位置时 系统的总动量 解 以滑块A和B组成的质点系统为研究对象 求这一质点系的动量可以用两种方法 第一种方法 先计算各个质点的动量 再求其矢量和 第二种方法 先确定系统的质心 以及质心的速度 然后计算系统的动量 参考性例题1 解 第一种方法 先计算各个质点的动量 再求其矢量和 建立Oxy坐标系 参考性例题1 解 第二种方法 先确定系统的质心 以及质心的速度 然后计算系统的动量 质点系的质心在C处 其速度矢量垂直于OC 数值为vC l vC l sin i cos j 系统的总质量 mC mA mB 2m 系统的总动量 参考性例题1 对质点系中第i个质点应用牛顿第二定律有 质点的动量定理 质点的动量对时间的一阶导数 等于作用在质点上的力 其中Fii为质点系中其它质点作用在第i个质点上的力 即内力 Fei为质点系以外的物体作用在第i个质点上的力 即外力 质点系的动量定理 动量定理与动量守恒 对于由n个质点所组成的质点系可列出n个这样的方程 将方程两侧的项分别相加 得到 注意到质点系内质点间的相互作用力总是成对出现 因此质点系的内力的矢量和等于零 于是上式变为 质点系的动量定理 动量定理与动量守恒 这就是微分形式的质点系动量定理 theoremofthemomentumofthesystemofparticles 即 质点系的动量对时间的变化率等于质点系所受外力系的矢量和 质点系的动量定理 动量定理与动量守恒 将上述方程两侧积分 便得到积分形式的质点系动量定理 也称为质点系的冲量定理 theoremofimpulse 质点系动量在某个时间间隔内的改变量等于质点系所受外力冲量 质点系的动量定理 动量定理与动量守恒 称为力F在时间间隔t1 t2内的冲量 称为力F的元冲量 如果作用在质点系上的外力主矢恒等于零 质点系的动量保持不变 这就是质点系动量守恒定律 theoremoftheconservationofmomentumofasystemofparticles 式中C1为常矢量 由运动的初始条件决定 质点系动量守恒定律 动量定理与动量守恒 实际应用质点系的动量定理时 常采用投影式 若作用在质点系上的外力主矢不恒为零 但在某个坐标轴上的投影恒为零 由上式可知 质点系的动量在该坐标轴上守恒 例如 式中C2为常量 由运动初始条件决定 质点系动量守恒定律 动量定理与动量守恒 质心运动定理 第10章动量定理 返回 返回总目录 质心运动定理 theoremofthemotionofthecenterofmass 是质点系动量定理的另一种形式 质心运动定理 质心运动定理 质点系的总质量与质心加速度的乘积等于作用在质点系上外力的矢量和 质心运动定理在直角坐标系中的投影式为 质心加速度在直角坐标轴上的投影 质心运动定理 守恒形式 如果作用于质点系上的外力主矢恒等于零 则有 这表明 质点系的质心作匀速直线运动 如果系统初始为静止状态 则质心的位矢为常矢量 质心位置保持不变 即质心守恒 质心运动定理 如果外力主矢在某一轴 例如x轴 上的投影为零 则有 质心速度在某一坐标轴 例如x轴 上的投影为常量 如果质心初始为静止状态 即vCx 0 则质心在x轴上的坐标保持不变 即 守恒形式 质心运动定理 动量定理应用举例 求解动力学问题的步骤基本相同 但是采用不同的定理时 都有一些需要特别注意之处 应用动量定理和质心运动定理时 需要特别注意这两定理的守恒形式 例题1 图示系统中 三个重物的质量分别为m1 m2 m3 由一绕过两个定滑轮的绳子相连接 四棱柱体的质量为m4 如略去一切摩擦和绳子的重量 3 若将上述系统放在有凸起的地面上 如图所示 当物块1下降s时 系统对凸起部分的水平压力 求 1 系统动量的表达式 2 系统初始静止 当物块1下降s时 假设物体相对四棱柱体的速度已知 四棱柱体的速度和四棱柱体相对地面的位移 动量定理应用举例 解 1 确定系统的动量表达式 建立坐标系如图示 根据 取四棱柱为动系 四棱柱体的速度为v 各物块相对四棱柱体的速度为vr 则 例题1 动量定理应用举例 解 2 确定四棱柱体的速度和四棱柱体相对地面的位移 因不计一切摩擦 系统在水平方向上动量守恒 即 由此解得 例题1 动量定理应用举例 解 2 确定四棱柱体的速度和四棱柱体相对地面的位移 又因系统初始静止 故在水平方向上质心守恒 对上式积分 得到四棱柱体的位移 例题1 动量定理应用举例 解 3 确定对凸起部分的作用力 可以采用质心运动定理 设物块相对四棱柱体的加速度为ar 由于凸起部分的作用 四棱柱体不动 根据质心运动定理 并注意到 故 四棱柱体的加速度a极易由牛顿定律求出 得到四棱柱体对于地面凸起部分的水平作用力 例题1 动量定理应用举例 例题2 动量定理应用举例 电动机的外壳和定子的总质量为m1 质心C1与转子转轴O1重合 转子质量为m2 质心O2与转轴不重合 偏心距O1O2 e 若转子以等角速度 旋转 求 电动机底座所受的水平和铅垂约束力 例题2 动量定理应用举例 解 1 选择包括外 壳 定子 转子的电动机作为研究对象 2 系统所受的外力 定子所受重力m1g 转子所受重力m2g 底座所受约束力Fx Fy M 例题2 动量定理应用举例 3 各刚体质心的加速度 aC1 aO1 0 aC2 aO2 e 2 向心加速度 例题2 动量定理应用举例 4 应用质心运动定理 4 应用质心运动定理 例题2 动量定理应用举例 电动机的外壳和定子的总质量为m1 质心C1与转子转轴O1重合 转子质量为m2 质心O2与转轴不重合 偏心距O1O2 e 转子以等角速度 旋转 如果底座与基础之间没有螺栓固定 初始条件为 0 vO2x 0 vO2y e 求 1 电动机跳起的条件 2 外壳在水平方向的运动规律 例题3 动量定理应用举例 解 1 选择包括外 壳 定子 转子的电动机作为研究对象 分析系统的受力 定子所受重力m1g 转子所受重力m2g 由于底座与基础之间没有螺栓固定 所以没有水平方向约束力 只有约束力Fy M 例题3 动量定理应用举例 解 2 分析运动 确定各个刚体质心的加速度 定系Oxy固结于地面 外壳作平移 其质心加速度为aO1 转子作平面运动 其质心加速度由两部分组成 ae aO1 牵连加速度 水平方向 ar aO2 e 2 相对加速度 指向O1 动系O1x1y1固结于外壳 例题3 动量定理应用举例 解 3 应用质心运动定理确定约束力 例题3 动量定理应用举例 解 4 分析电动机跳起的条件 当偏心转子质心O2运动到最上方时 t 2 电动机跳起的条件 例题3 动量定理应用举例 解 4 确定电动机外壳在水平方向运动方程 系统动量在水平方向的分量守恒 即FeRx 0 根据初始条件 初始时x方向没有运动 所以系统在x方向动量为0 其中 外壳质心的速度 x轴正向 转子质心的速度 例题3 动量定理应用举例 解 4 确定电动机外壳在水平方向运动方程 例题3 动量定理应用举例 解 5 计算结果分析 平衡位置 振幅 简谐运动 向右运动 向左运动 例题3 动量定理应用举例 驱动汽车行驶的力 一辆大马力的汽车 在崎岖不平的山路上可以畅通无阻 一旦开到结冰的光滑河面上 它却寸步难行 同一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国高强度锻制钢坯钳市场分析及竞争策略研究报告
- 2025至2030年中国镶蓝宝石戒指市场分析及竞争策略研究报告
- 2025至2030年中国金属型铸造模市场分析及竞争策略研究报告
- 2025至2030年中国西瓜种市场分析及竞争策略研究报告
- 2025至2030年中国电阻式触摸屏市场分析及竞争策略研究报告
- 2025至2030年中国片状排阻市场分析及竞争策略研究报告
- 2025至2030年中国槽式弯通接头市场分析及竞争策略研究报告
- 2025至2030年中国无机防水堵漏材料堵漏灵市场分析及竞争策略研究报告
- 2025至2030年中国户内外胶装支柱绝缘子市场分析及竞争策略研究报告
- 2025至2030年中国山药罐头市场分析及竞争策略研究报告
- 二手新能源汽车充电安全承诺书
- 2022年郑州市盐业公司招聘笔试题库及答案解析
- 品质异常8D报告 (错误模板及错误说明)指导培训
- 小学音乐 花城版 三年级《虫儿飞》课件
- 公共关系学-实训项目1:公关三要素分析
- 网页设计基础ppt课件(完整版)
- 贵阳市建设工程消防整改验收申请表
- 2021-2022学年云南省昆明市高一下册物理期末调研试题(含答案)
- 吉安土地利用总体规划
- 小学五年级下册体育教案_(全册)
- 理化组集体备课记录(114)
评论
0/150
提交评论