初二数学函数习题.doc_第1页
初二数学函数习题.doc_第2页
初二数学函数习题.doc_第3页
初二数学函数习题.doc_第4页
初二数学函数习题.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时15 一次函数【课前热身】1.(07福建)若正比例函数()经过点(,),则该正比例函数的解析式为_.2.(07湖北)如图,一次函数的图象经过A、B两点,则关于x的不等式的解集是 3. 一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的解析式可以是 .(任写出一个符合题意即可)BC4(08福建)一次函数的图象大致是( )5.(08郴州)如果点M在直线上,则M点的坐标可以是( ) A(1,0) B(0,1) C(1,0) D(1,1)【考点链接】1正比例函数的一般形式是_一次函数的一般形式是_.2. 一次函数的图象是经过 和 两点的 .3. 求一次函数的解析式的方法是 ,其基本步骤是: ; ; ; . 4.一次函数的图象与性质k、b的符号k0b0k0 b0k0 b0k0b0图像的大致位置经过象限第 象限第 象限第 象限第 象限性质y随x的增大而 y随x的增大而 y随x的增大而 y随x的增大而 【典例精析】例1 已知一次函数物图象经过A(-2,-3),B(1,3)两点. 求这个一次函数的解析式. 试判断点P(-1,1)是否在这个一次函数的图象上. 求此函数与x轴、y轴围成的三角形的面积.例2 (08广东)某农户种植一种经济作物,总用水量(米)与种植时间(天)之间的函数关系式如图所示 第天的总用水量为多少米? 当时,求与之间的函数关系式 O(天)y(米)400010003020 种植时间为多少天时,总用水量达到7000米?【中考演练】1.(08黄冈)直线y2xb经过点(1,3),则b _2. 已知直线y2x8与x轴和y轴的交点的坐标分别是_、_;与两条坐标轴围成的三角形的面积是_3. 如果直线经过第一、二、三象限,那么_0( 填“”、“0) B.y (x0) C.y(x0) D.y(x0) 6(08嘉兴)某反比例函数的图象经过点,则此函数图象也经过点( )A B C D7(07江西)对于反比例函数,下列说法不正确的是( )A点在它的图象上 B它的图象在第一、三象限C当时,随的增大而增大 D当时,随的增大而减小8.(08乌鲁木齐)反比例函数的图象位于( ) A第一、三象限 B第二、四象限 C第二、三象限D第一、二象限9某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位: 台天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调? 10.(07四川)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.第二十六章 二次函数【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用二次函数理解二次函数的意义会用描点法画出二次函数的图像会确定抛物线开口方向、顶点坐标和对称轴通过对实际问题的分析确定二次函数表达式理解二次函数与一元二次方程的关系会根据抛物线y=ax2+bx+c (a0)的图像来确定a、b、c的符号【知识梳理】1.定义:一般地,如果是常数,那么叫做的二次函数.2.二次函数用配方法可化成:的形式,其中.3.抛物线的三要素:开口方向、对称轴、顶点. 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. 平行于轴(或重合)的直线记作.特别地,轴记作直线.4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.5.求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.6.抛物线中,的作用 (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .7.用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.12.直线与抛物线的交点 (1)轴与抛物线得交点为(0, ). (2)与轴平行的直线与抛物线有且只有一个交点(,). (3)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离. (4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故【能力训练】1二次函数y=x26x5,当 时, ,且随的增大而减小。2.抛物线的顶点坐标在第三象限,则的值为( )A B C D 3抛物线y=x22x3的对称轴是直线( ) Ax =2 Bx =2 Cx =1 Dx =1 4 二次函数y=x2+2x7的函数值是8,那么对应的x的值是( ) A3 B5 C3和5 D3和5 5抛物线y=x2x的顶点坐标是( ) 6二次函数 的图象,如图1240所示,根据图象可得a、b、c与0的大小关系是( ) Aa0,b0,c0 Ba0,b0,c0 Ca0,b0,c0 Da0,b0,c0 7小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=35 t49 t2(t的单位s;h中的单位:m)可以描述他跳跃时 重心高度的变化如图,则他起跳后到重心最高时所用的时间是( ) A071s B0.70s C0.63s D036s8已知抛物线的解析式为y=(x2)2l,则抛物线的顶点坐标是( ) A(2,1)B(2,l)C(2,1)D(1,2)9若二次函数y=x2x与y=x2+k的图象的顶点重合,则下列结论不正确的是( ) A这两个函数图象有相同的对称轴 B这两个函数图象的开口方向相反 C方程x2+k=0没有实数根 D二次函数y=x2k的最大值为10抛物线y=x2 +2x3与x轴的交点的个数有( ) A0个 B1个 C2个 D3个11抛物线y=(xl)2 +2的对称轴是( ) A直线x=1 B直线x=1 C直线x=2 D直线x=212已知二次函数的图象如图所示,则在“ a0,b 0,c 0,b24ac0”中,正确的判断是( )A、 B、 C、 D、13已知二次函数(a0)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=0;当y=2时,x的值只能取0其中正确的个数是( ) Al个 B2个 C3个 D4个14如图,抛物线的顶点P的坐标是(1,3),则此抛物线对应的二次函数有() A最大值1 B最小值3 C最大值3 D最小值115用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650其中有一个值不正确,这个不正确的值是( ) A506 B380 C274 D18216将二次函数y=x24x+ 6化为 y=(xh)2+k的形式:y=_17把二次函数y=x24x+5化成y=(xh)2+k的形式:y=_18若二次函数y=x24x+c的图象与x轴没有交点,其中c为整数,则c=_(只要求写一个)19抛物线y=(x1)2+3的顶点坐标是_20二次函数y=x22x3与x轴两交点之间的距离为_.21. 已知抛物线y=ax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。(2)若点(x0,y0)在抛物线上,且0x04,试写出y0的取值范围。22华联商场以每件30元购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)满足一次函数y=1623x;(1)写出商场每天的销售利润(元)与每件的销售价(元)的函数关系式;(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?23某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程下面的二次函数图像(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系)根据图像提供的信息,解答下列问题: 3 4 5 6-1-2-3s(万元)t(月)O432112(1)求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?24如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?25.已知直线y2xb(b0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为yx2(b10)xc.若该抛物线过点B,且它的顶点P在直线y2xb上,试确定这条抛物线的解析式;过点B作直线BCAB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y2xb的解析式.26已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中xl5 2. D 21. (1) (1,4) (2) 5y04 22. (1) W= 3x2+252x4860 (2) W最大=432(元) 23. (1) S= t22t (t 0) (2) 当S=30时,t=10 (3) 当T=8时,S=16 24. (1) y= x2 (2) 水位约4小时上涨到0,按原速不能安全通过此桥.若要通过需超过60千米/小时25. (1) y=x24x6 或 y=x210 (2) y= 2x2 (提示,RtABC中,OB2=OAOC26. (1) 1m0,已知投产后该企业在第4年就能收回成本【解题反思】 用函数思想解决实际问题,要关注自变量与函数之间的关系,注意:本题中的y是从第1年到第x年的维修、保养费用总和【例3】某村响应党中央“减轻农民负担,提高农民生活水平”的号召,该村实行合作医疗制度,村委会规定: (一)每位村民年初交纳合作医疗基金元; (二)村民个人当年治疗花费的医疗费(以医院的收据为准),年底按下列办法处理村民个人当年花费的医疗费医疗费的处理办法不超过b元的部分全部由村集体承担(即全部报销)超过b元不超过5000元的部分个人承担c,其余部分由村集体承担超过5000元的部分全部由村集体承担 设一位村民当年治疗花费的医疗费用为x元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y元 (1)当0xb时,y=_;当b40,这样不成立,应为=30,代入和中,解得c=50,b=50当0x50时,y=30;当505000时,y=2505,村民个人一年最多承担医疗费为2505元; (3)全家医药费合计200+100+10+30+20=360,个人应该承担的药费之和(05200+5)+(05100+5)+30+30+30=250,集体为他们家承担的药费360250=110(元)【解题反思】 本题的关键是确定的范围,这里采用了反证法来说明b40综合训练1如果关于x的方程无解,则的值为_2如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EFEC,且EF=EC,DE=4 cm,矩形ABCD的周长为32 cm,求AE的长 3如图,ABC中,AC=4,AB=5,D是线段AC上一点(点D不与点A重合,可与点C重合),E是线段AB上一点,且ADE=B设AD=x,BE=y (1)写出y与x之间的函数关系式;(2)写出y的取值范围4如图,某农场要用总长24 m的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB为xm,面积为S m2; (1)求S关于x的函数关系式; (2)若鸡场的面积为45 m2,试求出鸡场的宽AB的长; (3)鸡场的面积能否达到50 m2?若能,请给出设计方案;若不能,请说明理由 5某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟? (2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由 6近几年我省高速公路的建设有了较大的发展,有力的促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,需费用120万元;若甲队单独做20天后,剩下的工程由乙队做,还需40天才能完成,这样需要费用110万元问: (1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需要费用多少万元? 7已知,关于x的一元二次方程mx2(3m+2)x+2m+2=0(m0) (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为x1、x2(其中x1x2),若y是关于m的函数,且y=x22x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当m满足什么条件时,ym+3? 8已知:ABC中,A、B、C的对边分别是、b、c,若关于x的方程x22(b+c)x+2bc+2=0有两个相等的实数根,且ABC的面积为8, (1)试判断ABC的形状并求b、c的长; (2)若点P为线段AB边上的一个动点,PQAC交BC于点Q,以PQ为一边作正方形PQMN,使得点B与线段MN不在线段PQ的同侧,设正方形PQMN与ABC的公共部分的面积为S,BP的长为x 试写出S与x之间的函数关系式; 当P点运动到何处时,S的值为39(02镇江)已知抛物线y=x2+bx+c经过A(1,0),B(3,0),C(0,3)三点 (1)求此抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线 (2)若点(x0,y0)在抛物线上,且0x04,试写出y0的取值范围 (3)设平行于y轴的直线x=t交线段BM于点P(点P能与点M重合,不能与点B重合),交x轴于点Q,四边形AQPC的面积为S 求S关于t的函数关系式以及自变量t的取值范围 求S取得最大值时,点P的坐标设四边形OBMC的面积为S,判断是否存在点P,使得S=S若存在,求出点P的坐标,若不存在,请说明理由 10已知动点P(2m1,2m+3)和反比例函数(k0) (1)若对一切实数m,动点P始终在一条直线上,试求的解析式 (2)设O为坐标原点,直线与x轴相交于点M,与y轴相交于点N,与反比例函数的图象相交于A,B两点(点A在第四象限)证明:OAMOBN; 如果AOB的面积为6,求反比例函数解析式参考答案12和3 26cm 3(1) (2) 4(1)S=x(243x)=3x2+24x(x4); (2)3x2+24x=45,解得:x1=3(舍去),x2=5,鸡场的宽AB的长为5米 (3)3x2+24x=50,3x224x+50=0,=24243500此方程无实数解,鸡场的面积不能达到50米2 5(1)由图象知,加油飞机的加油油箱中装载了30吨的油,全部加给运输飞机需10分钟 (2)设Q1=kt+b,则,Q=29t+40(0t10) (3)根据图象可知运输飞机的耗油量为每分钟01吨,10小时的耗油量为106001=60(吨)0, (m+2) 20,即A0,方程有两个不相等的实数根 (2)x1=1, (3)在直角坐标系中的第一象限内分别画出和y=m+3的图象,观察图象得: 当1m2时,ym+3 8(1)ABC是等腰直角三角形,b=c=4; (2)当0x2时,S=x2;当2x4时,S=x2+4x、3 9(1)y=x2+2x+3,M(1,4),图略 (2)5y04 (3)(1tba+cb+c abacbc(c0) abacbc(cb, bcacab,cda+cb+d.5一元一次不等式的解、解一元一次不等式6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7应用举例(略)典型例题:1.若关于的一元一次方程的解是,则的值是( ) A. B. 1 C. D. 0.2.若二元一次方程组的解为,则的值为( ) A. 1 B. 3 C. -1 D. -33.已知方程组的解是,则方程组的解是 .4.陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还剩余418元.”王老师算了一下说:“你肯定搞错了”.(1)王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释.(2)陈老师连忙拿出购物发票进行核对,发现自己的确是弄错了,因为他还买了一个笔记本. 但笔记本的单价已经模糊不清了,只能辨认出应该是小于10元的整数. 问:笔记本的单价可能是多少元?5.新星学校的一间阶梯教室内,第1排的座位数为,从第2排开始,每一排都比前一排增加个座位.(1)请你在下表的空格内填写一个适当的代数式:第1排的座位数第2排的座位数第3排的座位数第4排的座位数(2)已知第4排有18个座位,第15排的座位数是第5排的座位数的2倍,则第21排有多少个座位?6.(2007济宁)甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙两人上山的速度比是6:4,并且甲、乙两人下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是 .7. 如果关于的分式方程无解,那么的值是( )8. 解分式方程:. 9.某公司投资某个项目,现有甲、乙两个工程队有能力承包这个项目. 公司经调查发现:乙工程队单独完成工程所需的时间是甲工程队单独完成工程所需时间的2倍,;甲、乙两队合作完成工程需要20天,甲队每天的工作费用为1000元,乙队每天的工作费用为550元. 根据以上信息,从节约资金的角度考虑,该公司应选择哪个工程队来承包这个项目?公司应付出的费用为多少元?10.(2007青岛)某市在旧城改造过程中,需要整修一段全长2400米的道路. 为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务. 若设原计划每小时修路米,则根据题意可得方程 .11.(2007怀化)解方程:12.(1)下列方程中,肯定是一元二次方程的是( ) A. B.C. D.(2)已知是一元二次方程的一个解,则的值是( ) A. 1 B. 0 C. 0或1 D. 0或-1. (3)一元二次方程的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根13. 解下列方程:(1); (2).家庭作业:14.某商场将进价为30元的台灯以40元的价格出售,平均每月能销售600个. 调查表明:这种台灯的售价每上涨1元,其销售量将减少10台. 如果该商场想实现每月10000元的销售利润,那么这种台灯的售价应定为多少元?这时商场应进台灯多少台? 15.(2007巴中)三角形的一边长为10,另两边长是方程的两个实数根,那么这个三角形是 三角形.16.(2007绵阳)已知,是关于的方程的两实根. (1)试求,的值(用含,的代数式表示); (2)若,是某直角三角形的两直角边的长,问:当实数,满足什么条件时,这个直角三角形的面积最大?并求出其最大值. 第四讲 方程(组)与不等式组(二)17.解下列不等式(组),并将其解集表示在数轴上: (1); (2)18. “全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨. 现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装运4吨枇杷和1吨桃子,一辆乙种货车可装运枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地将全部水果运往销售地?有几种方案? (2)若甲种货车每辆要付运费300元,乙种货车每辆要付运费240元,则王灿应选择哪种运输方案,才能使运费最省?最少运费是多少?19.(2007德州)不等式组的整数解是 .20.(2006青岛)“五一”期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元. (1)若学校单独租用这两种车辆,各需要多少租金? (2)若学校同时租用这两种客车共8辆,且租金比单独租用一种车辆要省,请你帮助设计一种最节省租金的租车方案.21.某地区原有可退耕还林面积63.68万亩,从2000年开始执行国家退耕还林政策,当年就退耕还林8万亩,此后退耕还林的面积逐年增加,到2002年底共退耕还林29.12万亩. (1)求2001年、2002年退耕还林面积的平均增长率; (2)该地区从2003年起加大退耕还林的力度. 设2003年退耕还林的面积为万亩,退耕还林面积的增长率为,试写出与的函数关系式,并求出当不小于14.4万亩时的取值范围.22. 2007年某县筹备20周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A,B两种园艺造型共50个. 已知搭配一个A种造型需甲种花卉80盆,乙种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论