




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.4平面向量的应用1 向量在平面几何中的应用平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:abab(b0)x1y2x2y10.(2)证明垂直问题,常用数量积的运算性质abab0x1x2y1y20.(3)求夹角问题,利用夹角公式cos (为a与b的夹角)2 平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质1 判断下面结论是否正确(请在括号中打“”或“”)(1)若,则A,B,C三点共线()(2)解析几何中的坐标、直线平行、垂直、长度等问题都可以用向量解决()(3)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算()(4)在ABC中,若0,则ABC为钝角三角形()(5)已知平面直角坐标系内有三个定点A(2,1),B(0,10),C(8,0),若动点P满足:t(),tR,则点P的轨迹方程是xy10.()2 (2013福建)在四边形ABCD中,(1,2),(4,2),则该四边形的面积为()A. B2 C5 D10答案C解析0,ACBD.四边形ABCD的面积S|25.3已知a,b,c为ABC的三个内角A,B,C的对边,向量m(,1),n(cos A,sin A)若mn,且acos Bbcos Acsin C,则角A,B的大小分别为()A., B.,C., D.,答案C解析由mn得mn0,即cos Asin A0,即2cos0,A,A,即A.又acos Bbcos A2Rsin Acos B2Rsin Bcos A2Rsin(AB)2Rsin Cccsin C,所以sin C1,C,所以B.4 平面上有三个点A(2,y),B,C(x,y),若,则动点C的轨迹方程为_答案y28x (x0)解析由题意得,又,0,即0,化简得y28x (x0)5河水的流速为2 m/s,一艘小船想以垂直于河岸方向10 m/s的速度驶向对岸,则小船的静水速度大小为_答案2 m/s解析如图所示小船在静水中的速度为2 m/s.题型一平面向量在平面几何中的应用例1如图所示,四边形ABCD是正方形,P是对角线DB上的一点(不包括端点),E,F分别在边BC,DC上,且四边形PFCE是矩形,试用向量法证明:PAEF.思维启迪正方形中有垂直关系,因此考虑建立平面直角坐标系,求出所求线段对应的向量,根据向量知识证明证明建立如图所示的平面直角坐标系,设正方形的边长为1,DP(0),则A(0,1),P(,),E(1,),F(,0),(,1),(1,),| ,| ,|,即PAEF.思维升华用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系(1)平面上O,A,B三点不共线,设a,b,则OAB的面积等于()A.B.C.D.(2)在ABC中,已知向量与满足0且,则ABC为()A等边三角形 B直角三角形C等腰非等边三角形 D三边均不相等的三角形答案(1)C(2)A解析(1)cosBOA,则sinBOA ,SOAB|a|b| .(2)因为非零向量与满足0,所以BAC的平分线垂直于BC,所以ABAC.又cosBAC,所以BAC.所以ABC为等边三角形题型二平面向量在三角函数中的应用例2已知在锐角ABC中,两向量p(22sin A,cos Asin A),q(sin Acos A,1sin A),且p与q是共线向量(1)求A的大小;(2)求函数y2sin2Bcos取最大值时,B的大小思维启迪向量与三角函数的结合往往是简单的组合如本题中的条件通过向量给出,根据向量的平行得到一个等式因此这种题目较为简单解(1)pq,(22sin A)(1sin A)(cos Asin A)(sin Acos A)0,sin2A,sin A,ABC为锐角三角形,A60.(2)y2sin2Bcos2sin2Bcos2sin2Bcos(2B60)1cos 2Bcos(2B60)1cos 2Bcos 2Bcos 60sin 2Bsin 601cos 2Bsin 2B1sin(2B30),当2B3090,即B60时,函数取最大值2.思维升华解决平面向量与三角函数的交汇问题的关键,准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决ABC的三个内角A,B,C所对的边长分别是a,b,c,设向量m(ab,sin C),n(ac,sin Bsin A),若mn,则角B的大小为_答案解析mn,(ab)(sin Bsin A)sin C(ac)0,又,则化简得a2c2b2ac,cos B,0B0),则(a,3),(xa,y),(x,by),由0,得a(xa)3y0.由,得(xa,y)(x,by)(x,(yb),把a代入,得(x)3y0,整理得yx2(x0)高考中以向量为背景的创新题典例:(1)(5分)对任意两个非零的平面向量和,定义.若两个非零的平面向量a,b满足a与b的夹角(,),且ab和ba都在集合|nZ中,则ab等于()A. B. C1 D.思维启迪先根据定义表示出ab和ba,利用其属于集合|nZ,将其表示成集合中元素的形式,两式相乘即可表示出cos ,然后利用(,)确定cos 的取值范围,结合集合中nZ的限制条件即可确定n的值,从而求出ab的值解析根据新定义,得abcos ,bacos .又因为ab和ba都在集合|nZ中,设ab,ba(n1,n2Z),那么(ab)(ba)cos2,又(,),所以0n1n20不等价A组专项基础训练(时间:40分钟)一、选择题1 已知P是ABC所在平面内一点,若,其中R,则点P一定在()AABC的内部 BAC边所在直线上CAB边所在直线上 DBC边所在直线上答案B解析由题意知:,即,即与共线,点P在AC边所在直线上2 在ABC中,()|2,则ABC的形状一定是()A等边三角形 B等腰三角形C直角三角形 D等腰直角三角形答案C解析由()|2,得()0,即()0,20,A90.又根据已知条件不能得到|,故ABC一定是直角三角形3 已知|a|2|b|,|b|0且关于x的方程x2|a|xab0有两相等实根,则向量a与b的夹角是()A B C. D.答案D解析由已知可得|a|24ab0,即4|b|242|b|b|cos 0,cos ,又0,.4 已知点A(2,0)、B(3,0),动点P(x,y)满足x2,则点P的轨迹是()A圆 B椭圆 C双曲线 D抛物线答案D解析(2x,y),(3x,y),(2x)(3x)y2x2,y2x6.5 若函数yAsin(x)(A0,0,|0.由于,cos().故tan().B组专项能力提升(时间:30分钟)1 (2013浙江)设ABC,P0是边AB上一定点,满足P0BAB,且对于边AB上任一点P,恒有,则()AABC90 BBAC90CABAC DACBC答案D解析设BC中点为M,则2222,同理22,恒成立,|恒成立即P0MAB,取AB的中点N,又P0BAB,则CNAB,ACBC.故选D.2 已知在ABC中,a,b,ab0,SABC,|a|3,|b|5,则BAC_.答案150解析0,BAC为钝角,又SABC|a|b|sinBAC.sinBAC,BAC150.3已知直角梯形ABCD中,ADBC,ADC90,AD2,BC1,P是腰DC上的动点,则|3|的最小值为_答案5解析方法一以D为原点,分别以DA、DC所在直线为x、y轴建立如图所示的平面直角坐标系,设DCa,DPx.D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),(2,x),(1,ax),3(5,3a4x),|3|225(3a4x)225,|3|的最小值为5.方法二设x(0x1)(1x),x,(1x).3(34x),|3|222(34x)(34x)2225(34x)2225,|3|的最小值为5.4已知点A(2,0),B(0,2),C(cos ,sin ),且0.(1)若|,求与的夹角;(2)若,求tan 的值解(1)因为|,所以(2cos )2sin27,所以cos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天成教育命题研究院高三物理第一学期期末检测试题
- 安徽省蚌埠市田家炳中学、五中2025年物理高三第一学期期末达标检测模拟试题
- 企业电力施工安全培训课件
- 澳洲超时出境管理办法
- 电子业务印章管理办法
- 煤矸石管理办法江西省
- 企业安全用电常识培训
- 出租车公司安全培训会议课件
- 2025服务器租用合同
- 出国务工安全教育培训课件
- 教育测量与评价 课件全套 朱德全 第1-15章 教育测量与评价概述- 教育测评结果的统计处理
- 技术文档编制管理规定
- 集成电路芯片测试技术PPT全套完整教学课件
- 法院送达地址确认书
- 合理低价法投标报价得分自动计算表
- 土地资源管理专业考试知识事业单位考试
- 《琵琶行》导学案-教师版
- GA/T 1968-2021法医学死亡原因分类及其鉴定指南
- 安全技术交底(蜘蛛人)
- 砼搅拌机、灰浆机验收记录表
- 1999年版干部履历表
评论
0/150
提交评论