《探索长方形的周长与面积的关系》.doc_第1页
《探索长方形的周长与面积的关系》.doc_第2页
《探索长方形的周长与面积的关系》.doc_第3页
《探索长方形的周长与面积的关系》.doc_第4页
《探索长方形的周长与面积的关系》.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索长方形的周长与面积的关系学情分析:三年级的学生抽象、概括能力,独立探究规律的能力有待增强。前面已有长方形和正方形周长、面积计算的知识基础,但知识运用不够灵活。教学目标:1、学生在探究活动中,发现当周长一定时,长方形的长和宽越接近面积越大,正方形的面积最大。2、在主动探索、交流、合作中,学生尝试枚举法、列表的方法,渗透有序思考及数形结合的思想。3、引导学生善于观察思考,从数学现象中发现数学规律,能够体会到数学在生活中的应用价值,更加的喜欢探索数学知识。教学重点:经历探究过程,发现长方形周长和面积之间的关系。教学难点:学生学会有序全面的思考问题。教学过程:一、情境激趣,引发猜想1、猜想周长不相等的长方形,面积的大小关系:师:老师这有两根铁丝,一根长20厘米,一根长24厘米,用这两根铁丝分别围成一个长方形,哪根铁丝围成的长方形面积大?预设:用24厘米围出的长方形面积大。 不一定谁围出的大。师:说说你的想法。追问:你们都同意吗?为什么?预设:都同意:你们的意思是周长长的,面积就大。既然是这样,我们怎么能知道这个结论是对的呢?【启发学生寻求解决问题的方法,引导学生探究】对,不好验证,必须在所有情况下都成立才是对的,如果不对,那就好验证了,只要一种情况不成立,那这个结论就不成立了。引导:如果用20厘米的铁丝围成一个长6厘米,宽4厘米的长方形,面积是? 用24厘米的铁丝围成一个长11厘米,宽1厘米的长方形,面积是?(也有可能学生就举出类似的例子了)那刚才我们那个结论还成立吗?有不同意的:说说你的想法。(举例说明)看来,只要有一种情况不成立,我们的结论就不正确了。师:在接下来的研究中我们会有更深入的体会。2、猜想周长相等的长方形,面积的大小关系:提问:如果现在老师用两根长24厘米的铁丝,分别围出一个长方形和正方形,请你来猜一猜它们谁的周长长谁的周长短呢?师:猜一猜谁的面积大?这两根铁丝的长度一样,说明长方形和正方形的什么一样?师:也就是说,在周长一定的情况下,你们有了这样的猜想。预设:长方形的面积大、正方形的面积大、长方形和正方形的面积一样大(板书)【上课伊始,通过拿两根长度不同的铁丝围成长方形让学生比较面积大小,引起学生思考,引发学生猜想,激发学生的学习欲望,同时也让学生初步感受得出结论一定要去验证猜想。让学生知道验证结论不正确,可以举出一个反例,同时,要想验证结论是正确的,要在所有的情况下都成立。在此基础上,引发学生进行第二次猜想,更加激发学生验证猜想的需求,从而顺势引出新课的学习。同时,也为本课探究的规律的特点:在周长一定时,才会有正方形的面积比长方形的面积大这一结论奠定基础。】二、合作交流,验证规律过渡:(指板书)那到底谁的猜想正确呢?这就需要我们进行验证。我们怎样验证呢?预设:1、列出长方形的长和宽及正方形的边长,求出面积来验证。 2、画出长方形和正方形,算出它们的面积来验证。追问:围出的长方形的长和宽是多少呢?面积是多少呢?还有没有其它不同的长方形呢?你能不能把它们一一列举出来。小结:周长的一半是长和宽的和,它是固定不变的。看来,我们只要确定了宽的长度,长也就知道了。(一)初步探究,验证猜想1、合作探究 师:好,下面就请你们以小组为单位用你们所说的这些方法来验证你们的猜想吧!师:如果你们选用画图法来验证,老师为你们提供了间隔为1厘米的点子图。如果你们选用列表的方法来验证,老师为你们提供了表格。2、汇报交流师:哪个小组愿意跟大家交流一下你们组验证的过程? 追问:你们一共围成了几个长方形?其实还可以围成很多很多种长方形,只不过长和宽所出现的数据是小数,我们还没有学习过,今天我们只通过研究整数的数据来验证就可以了。预设1:(展示点子图的)实物投影展示师:在画图时,还可以怎么排列?准备画好的涂上颜色的有序思考画的图形,以备学生无序思考时使用预设1:(展示枚举法的)实物投影展示。师:说一说你们组是怎样验证的?无序:还可以怎样排列你验证的过程?有序:他们在验证的过程中有什么地方值得我们学习?初步交流,体会学习方法,感受有序思考预设2:(展示列表的)实物投影展示无序:对于他们所填的情况,你们有没有好的建议呀?你们能不能对他们所填的数据进行调整呀?有序:对于他们所填的情况,看看有没有值得我们学习的地方呀?枚举法与列表对比:比较这两种结果,你有什么想说的?师:你觉得用表格展示的结果这种方法怎么样?小结:听你这么一说,老师也觉得用表格的方法,能更清晰的展现出结论。长 (cm) 宽(cm) 面积 (cm2)?(枚举法、列表法)(对比不同的表格,体会有序思考,板书:有序思考)根据学生发言,交流中对比,突出学习方法,有序思考。师:通过我们刚才用个种方式解决长方形的长和宽以及面积问题,你发现了什么?预设:长越来越短,宽越来越长,面积越来越大 长和宽越来越接近,面积越来越大师:你的这些发现,都是在什么条件下?也就是什么不变的情况下才出现的这些结果呢?师:那看来周长不变的情况下,面积确实发生了变化。也就是“周长一定时,长和宽越接近,面积越大,正方形的面积比长方形的面积大”。(板书)3、感知规律师:再请同学们观察观察,这些长方形长、宽与面积之间的关系,看看你有什么新的发现?预设:周长一定时,长和宽越接近,面积越大。师:你能具体的说说,长和宽越接近是什么意思? 师:你们也发现了吗?能再来说说吗?(你们同意他所说的吗?)师:长和宽之间的相差数越小,面积就越来越大,什么情况下,面积最大了呢?小结:刚才,同学们通过长24厘米的铁丝所围成的长方形和正方形的验证了我们的猜想当周长一定时,正方形面积比长方形的面积大;长和宽越接近面积越大。【设计意图:此环节学生预设到学生会采用了画图、枚举、列表多种方法来解决长方形的长、宽、面积问题,验证猜想。在此基础上,引导学生仔细观察,发现规律,在合作交流中,感受数学知识的奥妙,更加激发学生的探究欲望。学生在学习过程中自己“发现”规律、“感悟”道理和思想方法,并且“品味”探究的喜悦。】(二)直观演示,深入感知师:看来,在周长相等的情况下,我们就可以比较面积了。在周长一定是,围出来的正方形的面积比长方形的面积大。可是,你们想一想,为什么当周长一定时,长与宽越接近,它的面积就越大?下面,那我们来以周长为24cm的数据为例来解答这个秘密。课件动态演示师:仔细观察,当长减少1厘米时,面积就相当于减少了1平方厘米,我们来看看,减少的是哪部分,(课件闪动)当宽增加1厘米时,面积就相当于增加了10平方厘米,我们再来看看,增加的是哪部分,实际上面积就增加了多少平方厘米?(9)师:再认真观察,当长又减少1厘米时,面积就相当于减少了2平方厘米,我们来看看,减少的是哪部分,(课件闪动)当宽增加1厘米时,面积就相当于增加了9平方厘米,我们再来看看,增加的是哪部分,实际上面积就增加了多少平方厘米?(7)师:我们接着往下看看,看看减少的是哪部分的面积,增加的是哪部分的面积?小结:同学们,当我们得出一个结论的时候,不光要知道这个结论是什么,还要深入思考为什么会有这样的结论。【设计意图:让学生在刚刚验证猜想后通过动态直观图的展示,让学生对待数学知识不但知其然,而且知其所以然,培养学生严谨的学习态度。另外,结合图形让学生理解,促使形象思维与抽象思维相结合,最终把复杂问题变简单,让学生更加理解所验证的结论。】(三)自选数据,再次验证过渡:是不是所有的长方形或正方形都具有这样的规律呢,只通过一个例子能说明问题吗?那怎么办?(需要我们通过多个例子进行进一步的验证。)好,就请你们自选数据再来验证一下。1、自选数据,拓展思路。师:那我先问问你们想选哪些数据?师:你们选有的都是16、24、18这样的数据,怎么没有选用17、21、19、这样的数据呀?师:其实,用这样的数据也是可以的围出正方形的,只是出现的不是整厘米数,我们用现在的知识还不能解决这个问题。2、独立填表,验证规律。师:下面,就请你们用你们自选的数据再来验证吧?我选的数据是_cm。长 (cm) 宽(cm) 面积 (cm2)3、交流总结规律。师:你们验证出的结果是什么?在验证的过程中,你们有什么问题吗?小结:同学们你们你了不起,通过这么多的数据再一次进行验证,最终得出了这样的结论当周长一定时,正方形的面积比长方形的面积大。【设计意图:这一环节目的在于使学生体会到有了猜想,一次验证不足以说明问题,又经过多角度考虑,多次验证,才能够下结论。深刻感受到数学结论必须经得起反复推敲,以此培养学生严谨的学风,认真的学习态度。】三、回顾猜想,感悟规律师:回到课前,老师带来的两根铁丝,一根长20厘米,一根长24厘米,它们谁围出的长方形大呢?(对比两个表格)长 (cm) 宽(cm) 面积 (cm2)长 (cm) 宽(cm) 面积 (cm2)919111118216102207321932764248432552575356636师:如果要说正方形的面积比长方形的面积大,必须得在什么条件下?用两根同样长的铁丝围成长方形和正方形,它们的面积相比较,()A、长方形的面积大 B、正方形的面积大 C、同样大 【设计意图:主要是让学生更加深刻的体会到得出当周长一定时,才会出现长和宽越接近,面积越大,正方形的面积比长方形的面积大。促使学生在解决数学问题时要考虑全面。】四、应用规律,解决问题1、判断:正方形的面积比方形面积大。( )周长相等的长方形面积也相等。( )师:说说你的想法。【设计意图:让学生更好地体会长方形的周长和面积之间的关系。只有在周长一定的时候,才可以去比较长正方形的面积,再次体会当周长一定的时候,面积是会发生改变的。】2、故事:(欧拉是著名的数学家,他小时候,要帮助爸爸放羊。 羊渐渐越来越多了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,面积正好是600平方米,爸爸算了算,围这样一个羊圈,需要用110米长的篱笆,(15+15+40+40=110)可他发现他的材料只够围100米的篱笆,不够用。正当父亲感到为难的时候,小欧拉却向父亲说:“我能用100米长的篱笆,围成一个比这个羊圈面积还大的羊圈。”你知道欧拉是怎样解决爸爸的这个难题的?)师:请你先在纸上算一算,然后和同伴交流你的意见。师:我们来看看欧拉是不是像你们这样解决的。欧拉的确把原来计划中的羊圈变成了一个边长为25米的正方形。他用仅有的100米的材料,不仅解决了这个问题,而且还是羊圈的面积变大了。你们看,这就是学习数学的价值所在,学习数学可以使我们越变越聪明。【设计意图:故事更加能够激发学生的学习兴趣,选用数学家小时候的故事,更那能激发学生解决问题的欲望,获得更多成功的喜悦。增强学好数学的信心,体会到生活中处处有数学,数学中处处有生活。更体会到了学习数学的价值,可以使我们越变越聪明。】五、课堂小结,课后拓展 今天我们通过铁丝发现了一个大数学家曾经发现的规律,当周长一定是,长和宽越接近,面积越大,围成的正方形的面积比长方形的面积大。如果周长不相等,我们也知道了,周长长的长方形不一定面积就大。是呀,这都是我们这节课探索出来的,你们和大数学家一样聪明,真了不起。但是,今天我们研究的是当周长一定时,长方形和正方形的面积的大小关系,你们想过吗?欧拉用同样长的篱笆,会不会围出面积比正方形更大的图形呢?将来我们学到更多的知识时,会解决这个问题的。那时,用我们所学的探索规律的方法继续验证你们的猜想吧!【设计意图:最后环节激发学生的求知欲,使得学生课下能利用本节课的探究方法继续探究新问题,培养探究意识。】六、设计特点1、注重对比学习,关注学生的认知基础。这节课从两点突出体现这一特点。第一,在课的导入环节,让学生进行两次猜想,谁的面积大?一次长度不一样,一次长度一样的情况,为第三个大环节回顾猜想,感悟规律埋下伏笔,在此,通过表格的对比,更加深入的让学生认知本节课探究的规律:当周长一定时,正方形的面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论