2008年高考对导数的题型考查小结.doc_第1页
2008年高考对导数的题型考查小结.doc_第2页
2008年高考对导数的题型考查小结.doc_第3页
2008年高考对导数的题型考查小结.doc_第4页
2008年高考对导数的题型考查小结.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2008年高考对导数的题型考查小结山东省高密市凤城中学薛振峰邮编:261500导数在近几年高考中每年必考,小题和解答题都有不少的题目,并且导数作为工具,与函数、不等式、三角函数、数列、平面解析几何、实际问题等都有联系,现对08高考题总结题型如下:一、利用导数讨论函数的单调性、极值、最值例1.(全国一19)已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围解:(1)求导:当时,在上递增当,求得两根为即在,递增,递减,(2)若函数在区间内是减函数,则说明两根在区间外,因此,由此可以解得法二:,且解得:例2.(北京卷18)已知函数,求导函数,并确定的单调区间解:令,得当,即时,的变化情况如下表:0当,即时,的变化情况如下表:0所以,当时,函数在上单调递减,在上单调递增,在上单调递减当时,函数在上单调递减,在上单调递增,在上单调递减当,即时,所以函数在上单调递减,在上单调递减例3.(陕西卷21)已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是()求函数的另一个极值点;()求函数的极大值和极小值,并求时的取值范围解:(),由题意知,即得,(*),由得,由韦达定理知另一个极值点为(或)()由(*)式得,即当时,;当时,(i)当时,在和内是减函数,在内是增函数,由及,解得(ii)当时,在和内是增函数,在内是减函数,恒成立综上可知,所求的取值范围为练习1.(湖北卷7)若上是减函数,则的取值范围是(C )A. B. C. D. 2.(广东卷7)设,若函数,有大于零的极值点,则( B )ABCD对于利用导数划分函数的单调区间,除应注意在定义域划分外,还主要用到一元二次不等式、高次不等式、分式不等式的解法;反之,告诉了函数在特定区间的单调性,讨论参数的范围也是常见题型。关于极值的题目经常转化为方程在某范围有根进行求解。二、利用导数作函数的图象、综合研究函数的其它性质例4.(四川卷22)已知是函数的一个极值点。()求;()求函数的单调区间;()若直线与函数的图象有3个交点,求的取值范围。解:()因为,所以. 因此()由()知,当时,当时,所以的单调增区间是,单调减区间是()由()知,在内单调增加,在内单调减少,在上单调增加,且当或时,所以的极大值为,极小值为因此 所以在的三个单调区间直线有的图象各有一个交点,当且仅当,因此,的取值范围为。19.(辽宁卷22)设函数()求f(x)的单调区间和极值;()是否存在实数a,使得关于x的不等式的解集为(0,+),若存在,求a的取值范围;若不存在,试说明理由解:()故当时,时,所以在单调递增,在单调递减由此知在的极大值为,没有极小值()()当时,由于,故关于的不等式的解集为()当时,由知,其中为正整数,且有又时,且取整数满足,且,则,即当时,关于的不等式的解集不是综合()()知,存在,使得关于的不等式的解集为,且的取值范围为18.(山东卷3)函数ylncosx(-x的图象是A32.(福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是D三、利用导数证明不等式、恒成立问题5.(天津卷21)已知函数(),其中()当时,讨论函数的单调性;()若函数仅在处有极值,求的取值范围;()若对于任意的,不等式在上恒成立,求的取值范围解:()当时,令,解得,当变化时,的变化情况如下表:02000极小值极大值极小值所以在,内是增函数,在,内是减函数(),显然不是方程的根为使仅在处有极值,必须成立,即有解些不等式,得这时,是唯一极值因此满足条件的的取值范围是()由条件,可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立所以,因此满足条件的的取值范围是6.(安徽卷20)设函数()求函数的单调区间; ()已知对任意成立,求实数的取值范围。解 (1) 若 则 列表如下 +0-单调增极大值单调减单调减 (2) 在 两边取对数, 得 ,由于所以 (1)由(1)的结果可知,当时, , 为使(1)式对所有成立,当且仅当,即7.(山东卷21)已知函数其中nN*,a为常数.()当n=2时,求函数f(x)的极值;()当a=1时,证明:对任意的正整数n,当x2时,有f(x)x-1.()解:由已知得函数f(x)的定义域为x|x1, 当n=2时, 所以 (1)当a0时,由f(x)=0得1,1,此时 f(x)=.当x(1,x1)时,f(x)0,f(x)单调递减;当x(x1+)时,f(x)0, f(x)单调递增.(2)当a0时,f(x)0恒成立,所以f(x)无极值.综上所述,n=2时,当a0时,f(x)在处取得极小值,极小值为当a0时,f(x)无极值.()证法一:因为a=1,所以 当n为偶数时,令则 g(x)=1+0(x2).所以当x2,+时,g(x)单调递增,又 g(2)=0因此g(2)=0恒成立, 所以f(x)x-1成立.当n为奇数时, 要证x-1,由于0,所以只需证ln(x-1) x-1, 令 h(x)=x-1-ln(x-1), 则 h(x)=1-0(x2), 所以 当x2,+时,单调递增,又h(2)=10, 所以当x2时,恒有h(x) 0,即ln(x-1)x-1命题成立.综上所述,结论成立.证法二:当a=1时,当x2,时,对任意的正整数n,恒有1,故只需证明1+ln(x-1) x-1.令则当x2时,0,故h(x)在上单调递增,因此当x2时,h(x)h(2)=0,即1+ln(x-1) x-1成立.故当x2时,有x-1.即f(x)x-1.12.(湖南卷21)已知函数f(x)=ln2(1+x)-.(I) 求函数的单调区间;()若不等式对任意的都成立(其中e是自然对数的底数).求的最大值.解: ()函数的定义域是,设则令则当时, 在(-1,0)上为增函数,当x0时,在上为减函数.所以h(x)在x=0处取得极大值,而h(0)=0,所以,函数g(x)在上为减函数.于是当时,当x0时,所以,当时,在(-1,0)上为增函数.当x0时,在上为减函数.故函数的单调递增区间为(-1,0),单调递减区间为.()不等式等价于不等式由知, 设则由()知,即所以于是G(x)在上为减函数.故函数G(x)在上的最小值为所以a的最大值为四、利用导数讨论三角函数的性质2.(全国二22)设函数()求的单调区间;()如果对任何,都有,求的取值范围解:()当()时,即;当()时,即因此在每一个区间()是增函数,在每一个区间()是减函数()令,则故当时,又,所以当时,即当时,令,则故当时,因此在上单调增加故当时,即于是,当时,当时,有因此,的取值范围是五、利用导数讨数列问题15.(福建卷19)已知函数.()设an是正数组成的数列,前n项和为Sn,其中a1=3.若点(nN*)在函数y=f(x)的图象上,求证:点(n,Sn)也在y=f(x)的图象上;()求函数f(x)在区间(a-1,a)内的极值. ()证明:因为所以(x)=x2+2x, 由点在函数y=f(x)的图象上, 又所以 所以,又因为(n)=n2+2n,所以, 故点也在函数y=f(x)的图象上.()解:,由得.当x变化时,的变化情况如下表:x(-,-2)-2(-2,0)0(0,+)f(x)+0-0+f(x)极大值极小值注意到,从而当,此时无极小值;当的极小值为,此时无极大值;当既无极大值又无极小值.本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分.六、利用导数讨论平面解析几何4.(全国一7)设曲线在点处的切线与直线垂直,则( D )A2BCD34.(辽宁卷6)设P为曲线C:上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为( A )ABCD4.(全国二14)设曲线在点处的切线与直线垂直,则 29.(江苏卷8)直线是曲线的一条切线,则实数b ln21七、利用导数解决实际问题8.(江苏卷17)某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km()按下列要求写出函数关系式:设BAO=(rad),将表示成的函数关系式;设OP(km) ,将表示成x的函数关系式()请你选用()中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短解:()由条件知PQ 垂直平分AB,若BAO=(rad) ,则, 故,又OP1010ta,所以, 所求函数关系式为若OP=(km) ,则OQ10,所以OA =OB=所求函数关系式为()选择函数模型,令0 得sin ,因为,所以=,当时, ,是的减函数;当时, ,是的增函数,所以当=时,。这时点P 位于线段AB 的中垂线上,且距离AB 边km处。本小题主要考查函数最值的应用11.(湖北卷20)水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为()该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?()求一年内该水库的最大蓄水量(取计算).解:水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为()该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?()求一年内该水库的最大蓄水量(取计算).10.(江西卷22)(本小题满分14分)已知函数,当时,求的单调区间;对任意正数,证明:解:、当时,求得 ,于是当时,;而当 时,即在中单调递增,而在中单调递减 (2).对任意给定的,由 ,若令 ,则 ,而 (一)、先证;因为,又由 ,得 所以(二)、再证;由、式中关于的对称性,不妨设则()、当,则,所以,因为 ,此时 ()、当 ,由得 ,,因为 所以 同理得 ,于是 今证明 , 因为 ,只要证 ,即 ,也即 ,据,此为显然 因此得证故由得 综上所述,对任何正数,皆有14.(重庆卷20)(本小题满分13分.()小问5分.()小问8分.)设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1)处的切线垂直于y轴.()用a分别表示b和c;()当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.解:()因为 又因为曲线通过点(0,2a+3), 故 又曲线在(-1,f(-1))处的切线垂直于y轴,故 即-2a+b=0,因此b=2a. ()由()得 故当时,取得最小值-. 此时有 从而 所以 令,解得 当 当 当 由此可见,函数的单调递减区间为(-,-2)和(2,+);单调递增区间为(-2,2).16.(福建卷22)(本小题满分14分)已知函数f(x)=ln(1+x)-x1()求f(x)的单调区间;()记f(x)在区间(nN*)上的最小值为bx令an=ln(1+n)-bx. ()如果对一切n,不等式恒成立,求实数c的取值范围;()求证: 本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分.解法一:(I)因为f(x)=ln(1+x)-x,所以函数定义域为(-1,+),且f(x)=-1=.由f(x)0得-1x0,f(x)的单调递增区间为(-1,0);由f(x)0,f(x)的单调递增区间为(0,+).(II)因为f(x)在0,n上是减函数,所以bn=f(n)=ln(1+n)-n,则an=ln(1+n)-bn=ln(1+n)-ln(1+n)+n=n.(i) 又lim,因此c1,即实数c的取值范围是(-,1).(II)由(i)知因为2=所以(nN*),则N*)解法二:()同解法一.()因为f(x)在上是减函数,所以则(i)因为对nN*恒成立.所以对nN*恒成立.则对nN*恒成立.设 nN*,则cg(n)对nN*恒成立.考虑因为0,所以内是减函数;则当nN*时,g(n)随n的增大而减小,又因为1.所以对一切因此c1,即实数c的取值范围是(-,1.() 由()知 下面用数学归纳法证明不等式 当n=1时,左边,右边,左边右边.不等式成立. 假设当n=k时,不等式成立.即当n=k+1时,=即nk1时,不等式成立综合、得,不等式成立.所以即.17.(广东卷19)(本小题满分14分)设,函数,试讨论函数的单调性【解析】 对于,当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数;对于,当时,函数在上是减函数;当时,函数在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论