【优化方案】高考数学总复习 第2章§2.10函数模型及其应用精品课件 理 北师大版.ppt_第1页
【优化方案】高考数学总复习 第2章§2.10函数模型及其应用精品课件 理 北师大版.ppt_第2页
【优化方案】高考数学总复习 第2章§2.10函数模型及其应用精品课件 理 北师大版.ppt_第3页
【优化方案】高考数学总复习 第2章§2.10函数模型及其应用精品课件 理 北师大版.ppt_第4页
【优化方案】高考数学总复习 第2章§2.10函数模型及其应用精品课件 理 北师大版.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 10函数模型及其应用 2 10函数模型及其应用 考向瞭望 把脉高考 考点探究 挑战高考 考向瞭望 把脉高考 双基研习 面对高考 双基研习 面对高考 1 三种增长型函数模型的图像与性质 增函数 越来越快 越来越慢 增函数 增函数 y轴 x轴 2 几类常用函数模型 3 解函数应用问题的步骤 四步八字 1 审题 弄清题意 分清条件和结论 理顺数量关系 初步选择数学模型 2 建模 将自然语言转化为数学语言 将文字语言转化为符号语言 利用数学知识 建立相应的数学模型 3 求模 求解数学模型 得出数学结论 4 还原 将数学问题还原为实际问题的意义 以上过程用框图表示如下 1 2011年焦作质检 在某种新型材料的研制中 实验人员获得了下列一组实验数据 答案 b 2 某工厂8年来某种产品的总产量c与时间t 年 的函数关系如图所示 下列四种说法 前三年中 产量增长的速度越来越快 前三年中 产量增长的速度越来越慢 第三年中 产品停止生产 第三年中 这种产品产量保持不变 其中说法正确的是 a 与 b 与 c 与 d 与 答案 a 3 某机床在生产中所需垫片可以外购 也可自己生产 其中外购的单价是每个1 10元 若自己生产 则每月需投资固定成本800元 并且每生产一个垫片还需材料费和劳务费共0 60元 设该厂每月所需垫片x个 则自己生产垫片比外购垫片较合算的条件是 a x 1800b x 1600c x 500d x 1400答案 b 4 教材习题改编 某厂生产一种畅销的新型工艺品 为此更新专用设备和制作模具花去了200000元 生产每件工艺品的直接成本为300元 每件工艺品的售价为500元 则利润l与产量x之间的函数关系式为 答案 l 200 x 200000 x n 答案 1 考点探究 挑战高考 1 在实际问题中 有很多问题的两变量之间的关系是一次函数模型 其增长特点是直线上升 自变量的系数大于0 或直线下降 自变量的系数小于0 2 有些问题的两变量之间是二次函数关系 如面积问题 利润问题 产量问题等 一般利用二次函数图像和性质解决 某租赁公司拥有汽车100辆 当每辆车的月租金为3000元时 可全部租出 当每辆车的月租金每增加50元时 未租出的车将会增加一辆 租出的车每辆每月需要维护费150元 未租出的车每辆每月需要维护费50元 1 当每辆车的月租金定为3600元时 能租出多少辆车 2 当每辆车的月租金定为多少元时 租赁公司的月收益最大 最大月收益是多少 思路点拨 建立每辆车的月租金与月收益的函数关系式后求函数最大值 解 1 租金增加了600元 所以未租出的车有12辆 一共租出了88辆 2 设每辆车的月租金为x元 x 3000 租赁公司的月收益为y元 失误点评 未能注意函数实际问题中的定义域 只考虑x 0 而未考虑x 3000致误 变式训练1南方某地市场信息中心为了分析地区蔬菜的供求情况 通过调查得到家种野菜 芦蒿 的市场需求量和供应量数据见下表 芦蒿的市场需求量信息表 芦蒿的市场供应量信息表 1 试写出描述芦蒿市场需求量y关于价格x的近似函数关系式 2 试根据这些信息 探求市场对芦蒿的供求平衡量 需求量与供应量相等 就称供求平衡 近似到1吨 解 1 在直角坐标系中 由第一个表描出数对 x y 对应的点 由图可知这些点近似地构成一条直线 其中四个点在一条直线上 所以芦蒿的市场需求量关于价格的近似函数关系式为 1 现实生活中有很多问题都可以用分段函数表示 如出租车计费 个人所得税等问题 分段函数是解决实际问题的重要模型 2 分段函数主要是每一段自变量变化所遵循的规律不同 可先将其看作几个问题 将各段的变化规律分别找出来 再将其合到一起 要注意各段自变量的变化范围 特别是端点值 3 构造分段函数时 要力求准确简捷 做到分段合理 不重不漏 分段函数也是分类讨论问题 某厂生产某种零件 每个零件的成本为40元 出厂单价定为60元 该厂为鼓励销售商订购 决定当一次订购量超过100个时 每多订购一个 订购的全部零件的出厂单价就降低0 02元 但实际出厂单价不能低于51元 1 当一次订购量为多少个时 零件的实际出厂单价恰降为51元 2 设一次订购量为x个 零件的实际出厂单价为p元 写出函数的表达式 3 当销售商一次订购500个零件时 该厂获得的利润是多少元 如果订购1000个 利润又是多少元 工厂售出一个零件的利润 实际出厂单价 单个成本 思路点拨 出厂单价与订购量成分段函数关系 其分段点有两个 一个是x 100 另一个是第 1 问中所求x的值 从而厂家获得的利润也是x的分段函数 当x 500时 l 6000 元 当x 1000时 l 11000 元 因此 当销售商一次订购500个零件时 该厂获得利润是6000元 如果订购1000个 利润是11000元 名师点评 分段函数型问题要能将分段的各边界点的位置确定好 然后根据已知条件列出解析式即可 在列方程或列函数解析式时 要能够充分抓住所设的未知量 把它当作是一个已知量来表示 去替换条件中的所有关键语句的变化量关系 得解析式 现实生活中的工程 投资 销售 环境保护等热点问题往往用构建分式函数模型 一般用基本不等式或导数求最值 2009年高考湖北卷 围建一个面积为360m2的矩形场地 要求矩形场地的一面利用旧墙 利用的旧墙需维修 其他三面围墙要新建 在旧墙对面的新墙上要留一个宽度为2m的进出口 如图所示 已知旧墙的维修费用为45元 m 新墙的造价为180元 m 设利用的旧墙长度为x 单位 m 修建此矩形场地围墙的总费用为y 单位 元 1 将y表示为x的函数 2 试确定x 使修建此矩形场地围墙的总费用最小 并求出最小总费用 思路点拨 1 根据所给条件把矩形围墙的各部分的费用都表示出来即可 2 根据基本不等式求解 规律小结 根据实际问题建立函数模型时 要准确理解问题的实际意义 当题目中给出变量时 要搞清楚这些变量究竟表示什么 这些变量有哪些限制条件等 函数模型建立后 要灵活地选择解决数学模型的方法 解模后要对实际问题做出解释 变式训练2某化妆品生产企业为了占有更多的市场份额 拟在2010年度进行一系列促销活动 经过市场调查和测算 化妆品的年销量x万件与年促销费t万元之间满足3 x与t 1成反比例 如果不搞促销活动 化妆品的年 销量只能是1万件 已知2010年生产化妆品的设备折旧 维修等固定费用为3万元 每生产1万件化妆品需要再投入32万元的生产费用 若将每件化妆品的售价定为 其生产成本的150 与 平均每件促销费的一半 之和 则当年生产的化妆品正好能销完 假设2010年生产的化妆品正好销完 1 将2010年的利润y 万元 表示为促销费t 万元 的函数 2 该企业2010年的促销费投入多少万元时 企业的年利润最大 方法技巧1 理解函数思想及函数与方程思想的实质 强化应用意识 2 通过解决函数应用题提高学生的阅读理解能力 抽象转化能力和解答实际问题的能力 1 含增长问题一般可建立指数型函数模型y a 1 p x 2 指数式和对数式的计算问题应借助计算器进行 3 实际问题要按精确度要求作近似计算 并且变形时要控制误差 注意单位的统一等问题 失误防范1 函数模型应用不当 是常见的解题错误 要正确理解题意 选择适当的函数模型 2 要特别关注实际问题的自变量的取值范围 合理确定函数的定义域 3 注意问题反馈 在解决函数模型后 必须验证这个数学解对实际问题的合理性 考向瞭望 把脉高考 对函数的实际应用问题的考查题目多以社会实际生活为背景 设问新颖 灵活 而解决这些问题所涉及的数学知识 思想 方法又都是高中教材和大纲所要求掌握的概念 公式 法则 定理等基础知识和方法 题型主要以解答题为主 难度中等偏高 常与导数 最值交汇 主要考查建模能力 同时考查分析问题 解决问题的能力 预测2012年高考仍将以函数建模为主要考点 同时考查利用导数求最值问题 2010年高考浙江卷 某商家一月份至五月份累计销售额达3860万元 预测六月份销售额为500万元 七月份销售额比六月份递增x 八月份销售额比七月份递增x 九 十月份销售总额与七 八月份销售总额相等 若一月份至十月份销售总额至少达7000万元 则x的最小值为 思路点拨 根据给出的自变量 把一到十月份的销售额表示出来 即建立起自变量x和销售额之间的函数关系式 建立模型的依据就是一至十月份的销售总额至少为7000万元 然后解不等式即可 解析 七月份的销售额为500 1 x 八月份的销售额为500 1 x 2 则一月份至十月份的销售总额是3860 500 2 500 1 x 500 1 x 2 根据题意 有3860 500 2 500 1 x 500 1 x 2 7000 即25 1 x 25 1 x 2 66 答案 20 名师点评 1 易误分析 实际问题中函数和一般的函数有一个明显的区别 就是在实际问题中 函数的定义域一般不是由函数解析式确定的 而是由问题的实际意义确定的 在解题中要格外注意 2 实际问题中往往解决的是一些最值问题 这类问题一般是求函数的最值 解不等式 组 等 即把建立的函数模型和求函数最值 解不等式 组 等问题结合起来 通过求函数最值或者解不等式等对实际问题作出解释 1 求乙方的年利润q 元 关于年产量t 吨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论