




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
机械控制理论基础习题答案习题:2.2,2.62.2. Write the (a) loop, (b) node equations for the circuit shown after the switch S is closed.2.2. 当开关S闭合后,写出电路的(a)回路,(b)节点方程式。321(a) loop(b) nodeNode 1 between R1 and R2, Node 2 between R2 and L, and Node 3 between L and C21. 2. 3. 2.6. (a) Derive the differential equation relating the position y(t) and the force f(t). (b) Draw the mechanical network. (c) Determine the transfer function G (D)=y/f.2.6. (a)求位置y(t)与力f(t)有关的微分方程;(b)画出机械网络图;(c)确定传递函数G(D)y/f。K2(b) Draw the mechanical network.BfK1K3(a) node xanode xb(c) where , , 习题:3.83.8 Solve the following differential equations. Assume zero initial conditions. Sketch the solutions.(a) (1)r=1, k=0, w=0 q=k-w=0The steady state output is therefore:xss=b0D2 xss =0.Inserting these values into previous equation(1):16 xss =16 b0=1 xss =b0= (2)The homogeneous equation is formed by letting the right side of the differential equation equal zero: (3)the transient response is the solution of the homogeneous equation, is obtained by assuming a solution of the formxt=Amemt (4)where m is a constant yet to be determinedthe characteristic equation of system: (5)m1=4j, m2=-4jvalues of m are complex, by using the Euler identity and then combining terms, transient solutions are (6)x= xt + xss= (7)Assume zero initial conditions, i.e., t=0, x(0)=0, Dx(0)=0, inserting these values into previous equation(7):, , x= xt + xss=(b) (1)r=9, k=0, w=0 q=k-w=0The steady state output is therefore:xss=b0D xss =0, D2 xss =0.Inserting these values into previous equation(1):3 xss =9, b0=3 xss =b0=3 (2)The homogeneous equation is formed by letting the right side of the differential equation equal zero: (3)the transient response is the solution of the homogeneous equation, is obtained by assuming a solution of the formxt=Amemt (4)where m is a constant yet to be determinedthe characteristic equation of system: (5)m1=-3, m2=-1There are no multiple roots, transient solutions are (6)x= xt + xss= (7)Assume zero initial conditions, i.e., t=0, x=0, Dx(0)=0,inserting these values into previous equation(7) and (1):, x= xt + xss=(c) (1)r=t+1, k=1, w=0 q=k-w=1The steady state output is therefore:xss=b1t+b0D xss = b1, D2 xss =0.Inserting these values into previous equation(1):4.25b1t+b1+4.25b0=t+1b1=0.2353 , b0=0.18 xss =0.2353t+0.18 (2)The homogeneous equation is formed by letting the right side of the differential equation equal zero: (3)the transient response is the solution of the homogeneous equation, is obtained by assuming a solution of the formxt=Amemt (4)where m is a constant yet to be determinedthe characteristic equation of system: (5)m1=-0.5+j2, m2=-0.5-j2values of m are complex, by using the Euler identity and then combining terms, transient solutions are (6)x= xt + xss (7)Assume zero initial conditions, i.e., t=0, x=0, inserting these values into previous equation(7) and (1):x= xt + xss=(d) (1)Assume the steady state output is:xss=Asin(10t+)D xss =10 Acos(10t+), D2 xss =-100 Asin(10t+), D3 xss =-1000 Acos(10t+)Inserting these values into previous equation(1):cos(10t+)=cos10tcos-sin10tsinsin(10t+)=sin10tcos+cos10tsin-960A cos(10t+)-298A sin(10t+)=10 sin10t(960Asin-298Acos)sin10t-(960Acos+298Asin)cos10t=10sin10t960Asin-298Acos=10960Acos+298Asin=0=-arctan0.3104A=xss =sin(10t+) (2)The homogeneous equation is formed by letting the right side of the differential equation equal zero: (3)the transient response is the solution of the homogeneous equation, is obtained by assuming a solution of the formxt=Amemt (4)where m is a constant yet to be determinedthe characteristic equation of system: (5)m1=-2, m2=-1, m2=-1There is a root of multiplicity, transient solutions are (6)x= xt + xss= (7)Assume zero initial conditions, i.e., t=0, x=0, inserting these values into previous equation(7) and (1):4.5 Find the partial-fraction expansions of the following:(a) , , , (b) (c) A=-2, B=-12(d) (e) 4.7 Write the Laplace transforms of the following equations and solve foe x(t); the initial conditions are given to the right.(a) Dx+8x=0 x(0)=-2The Laplace transforms of the equationsX(s)-x(0)+8X(s)=0X(s)(s+8)=-2The inverse Laplace transforms of the equation(p637, appendxA 7)x(t)=-2e-8t (b) D2x+2.8Dx+4x=10 x(0)=2, Dx(0)=3The Laplace transforms of the equations2X(s)-sx(0)- Dx(0)+ 2.8(sX(s)- x(0)+4X(s)=10s-1X(s)(s2+2.8s+4)-(2s+8.6)= 10s-1X(s)(s2+2.8s+4)=The inverse Laplace transforms of the equation(p637, appendxA 36) The inverse Laplace transforms of the equation(p637, appendxA 26)x(t)=2.5-0.5(c) D2x+4Dx+3x=t x(0)=0, Dx(0)=-2The Laplace transforms of the equations2X(s)-sx(0)- Dx(0)+ 4(sX(s)- x(0)+3X(s)= s-2X(s)(s2+4s+3)=The inverse Laplace transforms of the equation(p637, appendxA 7)x(t)=(d) D3x+4 D2x+ 9Dx+10x=sin5t x(0)=-4, Dx(0)=1, D2x(0)=0The Laplace transforms of the equations2X(s) s2x(0)-sD2x(0)- Dx(0)+4s2X(s)-sx(0)- Dx(0)+ 9sX(s)- x(0)+10X(s)=X(s)(s2+4s2+9s+10)=-(4s2+16s+31)= The inverse Laplace transforms of the equation(p637, appendxA 7)Exercises: 5.24,5.25 习题:5.24,5.255.24 Given the following system:(a) Simplify block diagram (or find C (s) /R (s). (b) Draw an equivalent singal flow graph. (c) Apply Masons gain rule to find C(s)/R(s). (a) (1)(2)(3)(4)(5)(b) (c) Applying Masons rule, this system has four loops, whose transmittances are:-1/s, -1/s, -k/s2, and 1/s4. Therefore L1 = -1/s-1/s-k/s21/s4= (1)Only three loops are nontouching; therefore, L2 = (-1/s)( -1/s)+(-1/s)( -k/s2)= (2)Although there are four loops, there is no set of three loops that are nontouching; therefore, L3 = 0 (3)=1-L1+L2-L3+ =1+= (4) (5) (6)5.25 For the following system,(a) Draw an equivalent singal flow graph. (b) Derive transfer functions for E(s)/R(s), X(s)/R(s), B(s)/R(s), C(s)/R(s), and Y(s)/R(s).(a) (b) L1 =-HG1 (1) L2 = L3 = 0 (2)=1-L1+L2-L3+=1+ HG1 (3)T1=G1 T2=G2 (4) (5) (6) Exercise: 6.2(a), (b), 6.14(b)习题:6.26.6 For each of the following cases, determine the range of values of K for which the response c(t) is stable, where the driving function is a step function. Determine the roots on the imaginary axis that yied sustained oscilations.(a) Solution: , The characteristic equation of the system is:The Routhian array:Based Rouths stability criterion, for stable operation of the system, the range of K: the range of values of KFor the roots on the imaginary axis that yied sustained oscilations,,, , (b) Solution: , The characteristic equation of the system is:The Routhian array:Based Rouths stability criterion, for stable operation of the system, the range of K: Sytisfy the range of values of K is not exist.(c) Solution: , The characteristic equation of the system is:The Routhian array:Based Rouths stability criterion, for stable operation of the system, the range of K: the range of values of KFor the roots on the imaginary axis that yied sustained oscilations, , 6.5 A unity-feedback system has the forword tranfer functionIn order to obtain the best possible ramp error coefficient, the highest possible gain K is desirable. Do stability requirements limit this choice of K?Solution: (a) determining e(t)ss , When Kv=K1=, e(t)ss=0(b) finding the value K for which the system is stableOverall transfer function of system:The Routhian array isBased Rouths stability criterion, for stable operation of the system, the range of K: the range of values of K6.14 A unity-feedback control system has (1) (2)where r(t)=2t. (a) If K=1.5, determine e(t)ss; (b) It is desired that for a ramp input e (t)ss1.5, what minimum value K1 have for this conditio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护理类职业资格考试试题及答案
- 化工废弃物资源化利用的前沿技术-洞察及研究
- 2025年医院安全面试题及答案
- 2025年全国卫生监督竞赛试题含答案
- 2025年防疫人员面试题及答案
- 2025年8月门诊护理理论考试试题及答案
- 疝气手术每日护理
- 金属炊具及器皿制作工基础知识考核试卷及答案
- 再生物资挑选工职业考核试卷及答案
- 低速载货汽车司机专项考核试卷及答案
- 第二单元混合运算单元测试卷(含答案) 2025-2026学年人教版三年级数学上册
- 短视频个人劳务合同范本
- 纯电动汽车维护与保养 课件 模块一新能源汽车维护与保养基础认知
- 翻译后的基因表达调控
- 2025年度中国工商银行河南省分行社会招聘120人备考练习试题及答案解析
- (2025年标准)酒店政府采购协议书
- 苏教版三年级上册数学全册教学设计(配2025年秋新版教材)
- 重庆中医药学院2025年第二季度考核招聘工作人员笔试备考题库带答案详解
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- 中国铁塔-基站规范培训课件
- GB-T 41378-2022 塑料 液态食品包装用吹塑聚丙烯容器(高清版)
评论
0/150
提交评论