2012-2013学年度第一学期期末考试试卷 高二 理科 (含参考答案).doc_第1页
2012-2013学年度第一学期期末考试试卷 高二 理科 (含参考答案).doc_第2页
2012-2013学年度第一学期期末考试试卷 高二 理科 (含参考答案).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012-2013学年度第一学期期末考试试卷 高二 数学 理科(含参考答案)PRINT 一、选择题(本大题共12小题,每小题5分,共60分)1.计算机执行下面的程序段后,输出的结果是( )A. B. C. D. 2.抛物线的焦点坐标为( )A. B. C. D. 3.设双曲线的焦点在轴上,两条渐近线为,则该双曲线的离心率等于( )A. B. C. D. 4.设则AB的中点P到C的距离等于( )A. B. C. D. 5.在学校举行的一次歌咏比赛中,已知七位评委为某班的节目评定分数的茎叶图如右,图中左边为十位数,右边为个位数,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )A. B. C. D. 6.在11111(2),110(5),45(8),40这四个各种进制数中,最小的数是( )A. 11111(2) B. 110(5) C. 45(8) D. 407.为了了解某校学生的体重情况,抽取了一个样本,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生人数为( )A. 46 B. 48 C. 50 D. 60 8.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A. 至少有一个黑球与都是黑球 B. 至少有一个黑球与都是红球C. 至少有一个黑球与至少有一个红球 D. 恰有一个黑球与恰有两个黑球9.若一动圆与圆外切,同时与圆内切,则动圆圆心的轨迹为( )A. 椭圆 B. 双曲线一支 C.抛物线 D. 圆10.已知点M在平面ABC内,点O在平面ABC外,并且满足:则的值为( )A. B. C. D. 11.若椭圆与双曲线有相同的焦点,是两曲线的一个交点,则的面积是( )A. B. C. D. 12.下列命题中的假命题是( )A.“” 是“成等比数列”的充要条件 B. 命题“”的否定是“”INPUT IF THEN ELSE IF THEN ELSE END IFEND IFPRINT END (第15题图)C. “若,则”的否命题D. 若命题“”和“”均为真,则命题为真二、填空题(本大题共4个小题,每小题5分,共20分)13.平面的法向量为,平面的法向量为,则平面与平面所成的二面角的大小为14.公共汽车站每5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是15.读下面程序,该程序所表示的函数是16.对于曲线,给出下面四个命题:曲线C不可能表示椭圆;当时,曲线C表示椭圆;若曲线C表示双曲线,则或;若曲线C表示焦点在轴上的椭圆,则其中所有正确命题的序号为 三。解答题(本大题共6个小题,共70分)17.(本题满分10分)已知两个非零实数,且求证:成立的充要条件是解:必要性“” 充分性“” 综上所述成立的充要条件是18.(本题满分12分)求以为中点的抛物线的弦所在直线的方程。解:设弦所在直线与抛物线交点为则并且有 得:即所以直线的斜率为 故直线的方程为即由得 所以 所以弦的长为 19.(本题满分12分)某地为了建立幸福指标体系,决定用分层抽样的方法从公务员、教师、自由职业三个群体的相关人员中,抽取若干个人组成研究小组,有关数据见下表(单位:人)相关人员数抽取人数公务员32教师48自由职业644(1)求研究小组的总人数;(2)若从研究小组的公务员和教师中随机选取2人撰写研究报告,求其中恰有1人来自公务员的概率解:(1)研究小组总人数为 (2)研究小组中公务员和教师总共有5人,分别记为其中表示公务员,表示教师,那从中抽取2人包含有10个基本事件分别为:其中恰好;有一人来自公务员包含6个基本事件:所以所求概率为20.(本题满分12分)在平行四边形ABCD中,将平行四边形沿对角线BD折成的二面角(如图中实线部分)(1)A,C两点间的距离;(2)异面直线AC与BD所成的角解:(1) 因为,ABCD为平行四边形,所以且,而二面角A-BD-C为,所以的夹角为所以,所以即A,C两点间的距离为(2)设向量的夹角为,则在中所以的夹角为所以所以异面直线AC与BD所成的角为21. (本题满分12分)如图,正方体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点。(1)试确定点F的位置,使得平面;(2)当平面时,求与平面所成的角的大小。解:(1)如图以D为原点,DA方向为x轴,DC方向为y轴,DD1为z轴建立空间直角坐标系,并设正方形的边长为1,点F坐标为,则有A,B1,D1,E使得平面,则有即 故 即当F为CD中点时平面(2)设平面的法向量为由(1)可知A1,B,F,E C1,由得: 即 令则 即 所以当平面时,与平面所成的角的大小为22. (本题满分12分)已知双曲线的中心在坐标原点O,一条准线方程为,且与椭圆有共同的焦点(1)求此双曲线的方程;(2)设直线与双曲线交与A,B两点,试问:是否存在实数,使得以AB为直径的园过原点O?若存在,求出的值,若不存在,请说明理由。解:(1)因为双曲线的中心在坐标原点,并且一条准线方程为所以双曲线的标准方程可设为 由题意可知 椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论