y=Asin(ωx+φ)图象性质.ppt_第1页
y=Asin(ωx+φ)图象性质.ppt_第2页
y=Asin(ωx+φ)图象性质.ppt_第3页
y=Asin(ωx+φ)图象性质.ppt_第4页
y=Asin(ωx+φ)图象性质.ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 5函数y Asin x 的图象 函数y Asin x 的图象有什么特征 A 对图象又有什么影响 如何作出它的图象 它的图象与y sinx的图象又有什么关系呢 引入 探索研究 1 函数与的图象的联系 例1 画出函数及 的简图 解 函数及的周期均为 先作上的简图 列表并描点作图 0 1 0 0 0 0 0 0 0 0 1 2 2 利用这两个函数的周期性 我们可以把它们在上的简图向左 右分别扩展 从而得到它们的简图 动画演示 函数 且 的图象可以看做是把函数的图象上所有点的纵坐标伸长 当时 或缩短 当 到原来的倍 横坐标不变 而得到 f x Af x 这种变换称为振幅变换 它是由的变化而引起的 叫做函数的振幅 的值域是 最大值是 最小值是 归纳总结 2 函数与的图象的联系 例2 作函数及的简图 列表 0 0 0 0 0 0 0 0 1 1 1 1 函数的周期 先作时的简图 动画演示 函数 且 的图象 可以看做是把的图象上所有点的横坐标缩短 当时 或伸长 当时 到原来的倍 纵坐标不变 而得到的 f x f x 这种变换称为周期变换 它是由的变化而引起的 与周期的关系为 归纳总结 3 函数y sin x 与y sinx的图象的联系 例3 作函数y sin x 及y sin x 的简图 用图象变换法 向左平移 3个单位长度 向右平移 4个单位长度 y sinx 动画演示 注 引起图象的左右平移 它改变图象的位置 不改变图象的形状 叫做初相 归纳总结 用图象变换法作y 3sin 2x 3 的图象的方法步骤 向左平移 3个单位长度 横坐标缩短到原来的1 2倍 纵坐标不变 纵坐标伸长到原来的3倍 横坐标不变 y sinx y sin x 3 y sin 2x 3 y 3sin 2x 3 一 二 先把y sinx的图象向左 当 0时 或向右 当 1时 或伸长 当01时 或缩短 当0 A 1时 到原来的A倍 横坐标不变 注 y Asin x A 0 0 中 A叫振幅 x 叫相位 叫初相 周期T 2 A 的变化引起伸缩变换 的变化引起平移变换 一般的 函数y Asin x A 0 0 的图象可由以下方法得到 函数y Asin x x R的图象可由如下步骤得到 步骤1 画出y sinx x 0 2 步骤2 得y sin x 一个周期 沿x轴 平行移动 步骤3 得y sin x 一个周期 横坐标 伸长或缩短 步骤4 得y Asin x 一个周期 纵坐标 伸长或缩短 步骤5 得y Asin x x R 沿x轴 扩展 2 将函数的图象上所有点的横坐标变为原来的 倍 纵坐标不变 得到的函数的解析式为 1 将函数y 3sinx的图象向右平移个单位长度 得到函数的解析式为 课堂练习 3 为得到 sin 2x x R 的图象 只需将函数 2sin 2x x R的图象上所有点 A 横坐标变为原来的 倍 纵坐标不变 B 横坐标变为原来的倍 纵坐标不变 C 纵坐标变为原来的 倍 横坐标不变 D 纵坐标变为原来的倍 横坐标不变 C 4 为得到 sin x x R 的图象 只需将函数 sin x x R的图象上所有点 A 横坐标变为原来的 倍 纵坐标不变 B 横坐标变为原来的倍 纵坐标不变 C 纵坐标变为原来的 倍 横坐标不变 D 纵坐标变为原来的倍 横坐标不变 5 为得到函数 sin 2x x R的图象 只需将函数 sin2x x R 的图象上所有点 A 向左平移个单位长度 B 向右平移个单位长度 C 向左平移个单位长度 D 向右平移个单位长度 B 6 将函数y sinx的图象上所有点的横坐标变为原来的 倍 纵坐标不变 再将所得函数图象向左平移个单位长度 得到的函数的解析式为 7 如何由y sinx的图象得到y 3sin x 的图象 向右平移 4个单位长度 各点的横坐标伸长到原来的2倍 纵坐标不变 各点的纵坐标伸长到原来的3倍 横坐标不变 解 1 y Asin x A 0 0 中 A叫振幅 叫初相 A 的变化引起 变换 的变化引起 变换 横向变换可简记为 左加右减 小伸大缩 纵向变换可简记为 大伸小缩 伸缩 平移 课堂小节 2 变换法作y Asin x A 0 0 简图的步骤 再把所得图象各点的纵坐标 A 1时 或 0 A 1时 到原来的 倍 横坐标不变 而得的y Asin x 的图象 把y sinx的图象向 0时 或向 0时 平移 个单位长度得到y sin x 的图象 把所得y sin x 图象各点的横坐标 1时 或 0 1时 到原来的 倍 纵坐标不变 得到y sin x 的图象 左 右 缩短 伸长 1 伸长 缩短 A 题型二求函数y Asin x b的解析式如图为y Asin x 的图象的一段 求其解析式 首先确定A 若以N为五点法作图中的第一个零点 由于此时曲线是先下降后上升 类似于y sinx的图象 所以A0 而可由相位来确定 解方法一以N为第一个零点 方法二由图象知A 1 与 是一致的 由 可得 事实上同样由 也可得 2 由此题两种解法可见 在由图象求解析式时 第一个零点 的确定是重要的 应尽量使A取正值 3 已知函数图象求函数y Asin x A 0 0 的解析式时 常用的解题方法是待定系数法 由图中的最大值或最小值确定A 由周期确定 由适合解析式的点的坐标来确定 但由图象求得的y Asin x A 0 0 的解析式一般不惟一 只有限定 的取值范围 才能得出惟一解 否则 的值不确定 解析式也就不惟一 4 将若干个点代入函数式 可以求得相关待定系数A 这里需要注意的是 要认清选择的点属于 五点 中的哪一个位置点 并能正确代入式中 依据五点列表法原理 点的序号与式子的关系是 第一点 即图象上升时与x轴的交点 为 x 0 第二点 即图象曲线的最高点 为 第三点 即图象下降时与x轴的交点 为 x 第四点 即图象曲线的最低点 为 第五点 为 x 2 题型三函数y Asin x 的图象与性质的综合应用 12分 在已知函数f x Asin x x R 其中A 0 0 0 的图象与x轴的交点中 相邻两个交点之间的距离为且图象上一个最低点为 1 求f x 的解析式 2 当时 求f x 的值域 易知T A 2 利用点M在曲线上可求 第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论