过程装备控制基础 基本概念.doc_第1页
过程装备控制基础 基本概念.doc_第2页
过程装备控制基础 基本概念.doc_第3页
过程装备控制基础 基本概念.doc_第4页
过程装备控制基础 基本概念.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2过程装备控制基础 基本概念返回首页 返回到:课程课外学习辅导目录返回到:基本概念目录 链接到:第3章基本概念返回到:第1章基本概念控制通道 Control action path被控过程的输入是操纵变量,而输出是被控变量,操纵变量对被控变量的作用途径,称之为被控过程控制通道。是过程特性之一。扰动通道 Disturbance path被控过程的输入是扰动变量,而输出是被控变量,扰动变量对被控变量的作用途径,称之为被控过程扰动通道。是过程特性之一。扰动变量 Disturbance variable除操纵变量外,作用于过程并引起被控变量变化的因素,成为扰动变量。负荷(处理量)变化是一种典型的扰动变量。阶跃响应 Step response阶跃响应是指将一个阶跃输入(Step function)加到系统上时,系统的输出。放大系数 Gain;Amplifying coefficient又称增益,输出变化量与输入变化量之比。其反映的是稳态特性,放大系数越大,输入变量对输出变量的影响越大。时间常数 Time constant表示过渡反应的时间过程的常数。在电阻、电容的电路中,它是电阻和电容的乘积。系统辨识 System identification根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。时域分析法 Method of temporal analysis时域分析是指控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能。由于时域分析是直接在时间域中对系统进行分析的方法,所以时域分析具有直观和准确的优点。系统输出量的时域表示可由微分方程得到,也可由传递函数得到。在初值为零时,一般都利用传递函数进行研究,用传递函数间接的评价系统的性能指标。频域分析法 Method of frequency analysis借助傅里叶级数,将非正弦周期性电压(电流)分解为一系列不同频率的正弦量之和,按照正弦交流电路计算方法对不同频率的正弦量分别求解,再根据线性电路叠加定理进行叠加即为所求的解,这是分析非正弦周期性电路的基本方法,这种方法叫频域分析法,也称为频谱分析法。传递函数 Transfer function零初始条件下线性系统响应(即输出)量的拉普拉斯变换与激励(即输入)量的拉普拉斯变换之比。记作G(s)Y(s)U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法频率响应法和根轨迹法都是建立在传递函数的基础之上。系统的传递函数与描述其运动规律的微分方程是对应的。可根据组成系统各单元的传递函数和它们之间的联结关系导出整体系统的传递函数,并用它分析系统的动态特性、稳定性,或根据给定要求综合控制系统,设计满意的控制器。以传递函数为工具分析和综合控制系统的方法称为频域法。比例(P)控制 Proportion control比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。比例度 Proportion为调节器输入的相对变化量与输出相对变化量之比的百分数。积分(I)控制 Integration control在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制 Differentiation control在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能 够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。比例积分微分控制(PID) Proportion Integration Differentiation control目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(Intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。整定参数 Setting parameter通过改变控制单元参数,如比例度、积分时间Ti、微分时间Td等,改善系统的动态、静态特性,以求取较佳的控制效果的过程。工程上,对简单控制系统,整定参数的方法有临界比例度法、反应曲线法、衰减曲线法、经验法等。PID控制器的参数整定 Parameter tuning of PID controllerPID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。对于温度系统:P(%)2060,I(分)310,D(分)0.53 对于流量系统:P(%)40100,I(分)0.11 对于压力系统:P(%)3070,I(分)0.43 对于液位系统:P(%)2080,I(分)15 参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。自适应控制 Self Adaptive Control, Adaptive Control在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地说,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于最优工作状态。因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。加入自适应的PID控制就带有了一些智能特点,像生物一样能适应外界条件的变化。还有自学习系统,就更加智能化了。积分时间 Integration time积分时间的物理意义是:在阶跃输入下,调节器的开环输出达到比例输出2倍时所耗的时间。串级控制系统 Cascade control system两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。鲁棒性 Robustness鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。鲁棒性原是统计学中的一个专门术语,20世纪70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。前馈反馈控制系统 Feedforward-feedback control system利用输入或扰动信号的直接控制作用构成的开环控制系统。这类按输入或扰动的开环控制通常与包含按偏差的闭环控制共同组成反馈-前馈控制系统,称为复合控制系统。由于按偏差确定控制作用以使输出量保持其在期望值的反馈控制系统,对于滞后较大的控制对象,其反馈控制作用不能及时影响系统的输出,以致引起输出量的过大波动,直接影响控制品质。如果引起输出量较大波动的主要外扰动参量是可量测和可控制的,则可在反馈控制的同时,利用外扰信号直接控制输出(实施前馈控制),构成复合控制能迅速有效地补偿外扰对整个系统的影响,并利于提高控制精度。这种按外扰信号实施前馈控制的方式称为扰动控制,按不变性原理,理论上可做到完全消除主扰动对系统输出的影响。比值控制系统 Ratio Control System在化工、炼油及其他工业生产过程中,工艺上常需要两种或两种以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。通常以保持两种或几种物料的流量为一定比例关系的系统,称之流量比值控制系统。比值控制系统可分为:开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统,变比值控制系统,串级和比值控制组合的系统等。均匀控制 Uniform Control在连续生产过程中,生产设备是紧密联系在一起的,前一设备的出料往往是后一设备的进料,特别是石油化工生产过程中,前后塔器之间操作密切,互相关联,前一精馏塔的出料就是后面塔的进料,为了解决前后两塔供求之间的矛盾,于是企图设法采用自动调节来模拟中间贮槽的缓冲作用,力图使液位和流量能均匀地变化,组成所谓均匀控制系统。由此可知均匀控制是指控制目的,而不是指控制系统的结构。均匀控制应具有以下特点:1前后两个设备的两个参数都应该是缓慢变化的。当采取液位定值调节时,是通过调节流量的手段达到的,因此要使液位平稳,流量变化就较大,这样就不能满足下一工序平稳进料的要求;如果采取流量定值调节,流量稳定,但前一设备的液位波动就比较大;如果采取均匀控制,就能兼顾液位和流量都在允许范围内缓慢均匀地变化,因此符合均匀控制的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论