全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.3函数的最大(小)值与导数教学案教学目标:使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值最小值与函数的极大值和极小值的区别与联系.教学过程:一.新课讲授观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值.说明:如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续.(可以不给学生讲)给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;在闭区间上的每一点必须连续,即函数图像没有间断;函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值”与“极值”的区别和联系最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一.函数在其定义区间上的最大值最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3.利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值二.典例分析例1.(课本例5)求在的最大值与最小值 解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于,因此,函数在的最大值是4,最小值是.上述结论可以从函数在上的图象得到直观验证.三.课堂练习1.下列说法正确的是( )A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值2.函数y=f(x)在区间a,b上的最大值是M,最小值是m,若M=m,则f(x) ( )A.等于0B.大于0 C.小于0D.以上都有可能3.函数y=,在-1, 1上的最小值为 ( )A.0 B.-2 C.-1 D.4.求函数在区间上的最大值与最小值.5.课本练习四.回顾总结1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;2.函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;3.闭区间上的连续函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 60815-1:2025 EN Selection and dimensioning of high-voltage insulators intended for use in polluted conditions - Part 1: Definitions,information and general principle
- 【正版授权】 ISO/IEC 19896-3:2025 EN Information security,cybersecurity and privacy protection - Requirements for the competence of IT security conformance assessment body personnel - P
- 【正版授权】 IEC 60079-28:2025 EN Explosive atmospheres - Part 28: Protection of equipment and transmission systems using optical radiation
- 脑卒中患者睡眠改善康复
- 海洋肥料的开发应用
- 机床自动化改造技术研究
- XXXX学校提升教学质量实施方案
- 工作服长期合同范本
- 工程背靠背合同范本
- 店铺转让家具协议书
- 2025年报关员资格全国统一考试试卷及答案
- 四川成考试卷真题及答案
- 2025年法宣在线考试题库及答案
- 2025年考研法硕(法学)专业基础397真题(试卷+答案)
- 2025年加油站操作员高级理论考试试题及答案
- 宾馆拆除工程合同范本
- 2025贵州毕节市市直事业单位面向基层公开考调工作人员考试笔试备考试题及答案解析
- 哈尔滨汽轮机厂有限责任公司-企业报告(业主版)
- 2025年锦州辅警协警招聘考试真题含答案详解(考试直接用)
- 装饰施工项目安全管理课件
- 雨课堂在线学堂《中国经济概论》作业单元考核答案
评论
0/150
提交评论