
免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
182特殊的平行四边形182.1矩形第1课时矩形的性质1理解并掌握矩形的性质定理及推论;(重点)2会用矩形的性质定理及推论进行推导证明;(重点)3会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算(难点)一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示二、合作探究探究点一:矩形的性质【类型一】 运用矩形的性质求线段或角 在矩形ABCD中,O是BC的中点,AOD90,矩形ABCD的周长为24cm,则AB长为()A1cmB2cmC2.5cmD4cm解析:在矩形ABCD中,O是BC的中点,AOD90.根据矩形的性质得到ABOOCD,则OAOD,DAO45,所以BOABAO45,即BC2AB.由矩形ABCD的周长为24cm,得2AB4AB24cm,解得AB4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质【类型二】 运用矩形的性质解决有关面积问题 如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的()A. B. C. D.解析:在矩形ABCD中,ABCD,OBOD,ABOCDO.在BOE和DOF中,BOEDOF(ASA),SBOESDOF,S阴影SAOBS矩形ABCD.故选B.方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键【类型三】 运用矩形的性质证明线段相等 如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CFBE于F.求证:BFAE.解析:利用矩形的性质得出ADBC,A90,再利用全等三角形的判定得出BFCEAB,进而得出答案证明:在矩形ABCD中,ADBC,A90,AEBFBC.CFBE,BFCA90.由作图可知,BCBE.在BFC和EAB中,BFCEAB(AAS),BFAE.方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明【类型四】 运用矩形的性质证明角相等 如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EFED,EFED.求证:AE平分BAD.解析:要证AE平分BAD,可转化为ABE为等腰直角三角形,得ABBE.又ABCD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证证明:四边形ABCD是矩形,BCBAD90,ABCD,BEFBFE90.EFED,BEFCED90.BFECED,BEFEDC.在EBF与DCE中,EBFDCE(ASA)BECD.BEAB,BAEBEA45,EAD45,BAEEAD,AE平分BAD.方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决探究点二:直角三角形斜边上的中线的性质 如图,在ABC中,AD是高,E、F分别是AB、AC的中点(1)若AB10,AC8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DEAEAB,DFAFAC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可(1)解:AD是ABC的高,E、F分别是AB、AC的中点,DEAEAB105,DFAFAC84,四边形AEDF的周长AEDEDFAF554418;(2)证明:DEAE,DFAF,E、F在线段AD的垂直平分线上,EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解三、板书设计1矩形的性质矩形的四个角都是直角;矩形的对角线相等2直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上数学质量检测试题命题说明一、命题指导思想: 依据小学数学课程标准及小学数学教学大纲的相关要求,本学期所学教材所涉猎的基础知识、基本技能为切入点,贯彻“以学生为本,关注每一位学生的成长”的教育思想,旨在全面培养学生的数学素养。二、命题出发点: 面向全体学生,关注不同层面学生的认知需求,以激励、呵护二年级学生学习数学的积极性,培养学生认真、严谨、科学的学习习惯,促进学生逐步形成良好的观察能力、分析能力及缜密的逻辑思维能力,培养学生学以致用的实践能力为出发点。三、命题原则: 以检验学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化创意产业租赁居间服务合同
- 文化展览馆班车接送与安保服务合同
- 房屋买卖合同中关于过户后的产权转移
- 车场租赁与智能停车诱导系统协议
- 供应链管理备货合作协议书
- 老年排舞培训体系构建
- 呼衰的护理课件
- 市场监督管理局工作职能与监管体系
- 甲状旁腺肿瘤护理查房
- 2025年模具协议合同
- 麦克维尔冷水机组使用说明书
- 2023年安徽省高考理科数学试卷及参考答案(word版)
- 马克思主义新闻观十二讲之第七讲坚持正面宣传为主课件
- 康复科实习生入科教育
- 物理课件:《功》功和机械能PPT优质课件
- 盾构法隧道施工原理、常见难点和问题
- 《国际贸易实务》全书电子教案完整版教学设计
- 档案管理基础(第5章 档案的保管)
- JTT888-2020公共汽车类型划分及等级评定_(高清-最新)
- 应用文写作之调查报告(课堂PPT)
- 热风炉烘炉方案2014.
评论
0/150
提交评论