数学北师大版八年级下册平行四边形性质一教学设计.doc_第1页
数学北师大版八年级下册平行四边形性质一教学设计.doc_第2页
数学北师大版八年级下册平行四边形性质一教学设计.doc_第3页
数学北师大版八年级下册平行四边形性质一教学设计.doc_第4页
数学北师大版八年级下册平行四边形性质一教学设计.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平行四边形的性质(一)一、教学背景(一)学生起点分析学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。(二)、学习任务分析四边形和三角形一样,也是基本的平面图形,在七年级下册有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节课探索平行四边形的性质重在培养学生的探索意识和逻辑思维能力。教学内容的选择和处理:为了遵循学生认知规律的循序渐进性,培养学生的学习能力,发展智力。我采取把平行四边形的性质安排在两节课,本节课主要研究前两条性质。对边相等,对角相等,这里我把中心对称这条性质放在第二课时,与对角线互相平分放在一起,因为我认为认识了对角线互相平分以后,中心对称性就顺理成章了。再一个原因,如果中心对称性放在这节课会耽搁时间去探索,这样会影响本节课知识的拓展,会使这节课内容拓展不到位。二、教学目标:1经历探索平行四边形有关概念的过程,在活动中发展学生的探究意识和合作交流的习惯;2探索并掌握平行四边形边角的性质,并能简单应用;3在探索活动过程中发展学生的探究意识。三、教学重点:平行四边形边角性质的探索。教学难点:平行四边形边角性质的理解。四、教法:采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学.学法:学生自主地进行观察、试验、猜测、推理的数学活动,在合作与交流中学习。五、教学过程设计本节课分4个环节:第一环节:实践探索,直观感知第二环节:推理论证,感悟升华第三环节:应用巩固,深化提高第四环节:评价反思,概括总结一、 第一环节:实践探索,直观感知1实践探索内容通过复习回顾,再感知生活中常见的平行四边形,使学生感受数学来源于生活,数学图形和生活是紧密联系的,进一步探索平行四边形的概念。进一步介绍对边、对角、邻边、邻角的概念以及对角线的概念。你能否用几何语言表示平行四边形的定义?ABCD 四边形ABCD是平行四边形ADBC ABCD四边形ABCD是平行四边形 ADBC 2.目的:通过学生直观感知,引出平行四边形的概念;两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。 教师进一步强调:平行四边形定义中的两个条件:四边形,两边分别分别平行即AD / BC 且AB / BC;平行四边形的表示方法 。第二环节:推理论证、感悟升华1实践探索内容(1)通过作图、直观感知,可以观察到平行四边形的对应边、对应角分别相等。(2)可以通过推理来证明这个结论。例:如图6-2(1),四边形ABCD是平行四边形. 求证:AB=CD,BC=DA.证明:如图6-2(2),连接AC. 四边形ABCD是平行四边形AD / BC, AB / CD 1=2,3=4 ABC和CDA中 2=1 AC=CA 3=4 ABCCDA(ASA) AB=DC, AD=CB学生证明:平行四边形的对角相等.2活动目的:学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。3活动效果:“实践认识再实践认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。第三环节:应用巩固,深化提高1.练一练(1)在平行四边形ABCD中,A=60,BC=3cm,则B=_,C=_,AD=_. (2) 若在平行四边形ABCD中,BE平分ABC,则ED_ABDCE9cm5cm通过对本题的分析,得出结论:平行四边形的一条内角平分线将平行四边形分成两个部分,一部分是梯形,另一部分是等腰三角形。变式练习:若在平行四边形ABCD中,BE平分ABC,CF平分BCD,则EF_。(3)已知:如图6-3,在平行四边形ABCD中,E,F是对角线AC上的两点,且AE=CF求证:BE=DF证明:四边形ABCD是平行四边形 AB = CD AB / CD BAE=DCF又 AE=CF BAEDCF BE=DF变式练习:已知:在平行四边形ABCD中,E,F是对角线AC上的两点,且BE垂直AC于E,DF垂直AC于F。 求证:BE=DF活动效果:学生经过通过此环节的思、议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索归纳,比较的综合提高。第四环节:评价反思 概括总结1活动内容师生相互交流、反思、总结。经历了对平行四边形的特征探索,你有什么感受和收获?1 两组对边分别平行的四边形叫做平行四边形。2 平行四边形的性质:对边平行 对边相等 对角相等2活动目的:鼓励学生交流课堂实践、观察探索的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论