




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欢迎下载本文档参考使用,如果有疑问或者需要CAD图纸的请联系q1484406321编号无锡太湖学院毕业设计(论文)相关资料题目: MKZ84125轧辊磨床轴承 箱体翻转机构设计 信机 系 机械工程及自动化专业学 号: 0923226学生姓名: 吴 佳 指导教师: 尤丽华 (职称:副教授 ) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: MKZ84125轧辊磨床轴承 箱体翻转机构设计 机械 系 机械工程及自动化 专业学 号: 0923226 学生姓名: 吴 佳 指导教师: 尤丽华 (职称:副教授 ) (职称: )2012年11月25日 课题来源本课题来自于无锡上机磨床有限公司的生产实际。该公司设计生产的自动数控轧辊磨床在磨削工作辊的过程中,两端的轴承箱体会与砂轮架发生干涉,而频繁的装卸轴承箱体则会使加工过程变得繁琐。为了解决这个问题,本课题要设计一个轧辊磨床翻转机构,在磨削工作辊时将轴承箱体翻转90,既避免了在加工过程中轴承箱体和砂轮架干涉,又保证了加工的效率。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)十八世纪30年代,为了适应钟表、自行车、缝纫机和枪械等零件淬硬后的加工,英国、德国和美国分别研制出使用天然磨料砂轮的磨床。这些磨床是在当时现成的机床如车床、刨床等上面加装磨头改制而成的,它们结构简单,刚度低,磨削时易产生振动,要求操作工人要有很高的技艺才能磨出精密的工件。1876年在巴黎博览会展出的美国布朗-夏普公司制造的万能外圆磨床,是首次具有现代磨床基本特征的机械。它的工件头架和尾座安装在往复移动的工作台上,箱形床身提高了机床刚度,并带有内圆磨削附件。1883年,这家公司制成磨头装在立柱上、工作台作往复移动的平面磨床。1900年前后,人造磨料的发展和液压传动的应用,对磨床的发展有很大的推动作用。随着近代工业特别是汽车工业的发展,各种不同类型的磨床相继问世。例如20世纪初,先后研制出加工气缸体的行星内圆磨床、曲轴磨床、凸轮轴磨床和带电磁吸盘的活塞环磨床等。自动测量装置于1908年开始应用到磨床上。到了1920年前后,无心磨床、双端面磨床、轧辊磨床、导轨磨床,珩磨机和超精加工机床等相继制成使用;50年代又出现了可作镜面磨削的高精度外圆磨床;60年代末又出现了砂轮线速度达6080米/秒的高速磨床和大切深、缓进给磨削平面磨床;70年代,采用微处理机的数字控制和适应控制等技术在磨床上得到了广泛的应用。随着高精度、高硬度机械零件数量的增加,以及精密铸造和精密锻造工艺的发展,磨床的性能、品种和产量都在不断的提高和增长。磨床是各类金属切削机床中品种最多的一类,主要类型有外圆磨床、内圆磨床、平面磨床、无心磨床、工具磨床等。外圆磨床是使用的最广泛的,能加工各种圆柱形和圆锥形外表面及轴肩端面的磨床。万能外圆磨床还带有内圆磨削附件,可磨削内孔和锥度较大的内、外锥面。不过外圆磨床的自动化程度较低,只适用于中小批单件生产和修配工作。内圆磨床的砂轮主轴转速很高,可磨削圆柱、圆锥形内孔表面。普通内圆磨床仅适于单件、小批生产。自动和半自动内圆磨床除工作循环自动进行外,还可在加工中自动测量,大多用于大批量的生产中。 平面磨床的工件一般是夹紧在工作台上,或靠电磁吸力固定在电磁工作台上,然后用砂轮的周边或端面磨削工件平面的磨床;无心磨床通常指无心外圆磨床,即工件不用顶尖或卡盘定心和支承,而以工件被磨削外圆面作定位面,工件位于砂轮和导轮之间,由托板支承,这种磨床的生产效率较高,易于实现自动化,多用在大批量生产中。 工具磨床是专门用于工具制造和刀具刃磨的磨床,有万能工具磨床、钻头刃磨床、拉刀刃磨床、工具曲线磨床等,多用于工具制造厂和机械制造厂的工具车间。砂带磨床是以快速运动的砂带作为磨具,工件由输送带支承,效率比其他磨床高数倍,功率消耗仅为其他磨床的几分之一,主要用于加工大尺寸板材、耐热难加工材料和大量生产的平面零件等。专门化磨床是专门磨削某一类零件,如曲轴、凸轮轴、花键轴、导轨、叶片、轴承滚道及齿轮和螺纹等的磨床。除以上几类外,还有珩磨机、研磨机、坐标磨床和钢坯磨床等多种类型。由于长期以来对新技术的应用相对滞后,国内机床产品的总体技术水平比之先进国家同类型机床还有着相当大的差距,劳动生产率低下,在国际市场中竞争力不足,经济效益不高。在国外高档机床大举进攻中国市场的情况下,我们只有以积极的姿态面对这一严峻的形势。尽快应用先进的设计技术,能快速开发出结构合理、自动化水平高、加工精度高、低振动、低成本的机床新产品响应市场,我国的机床工业才有出路。为了达到这一目的,掌握先进的机床设计方法就显得尤为重要。我国机床工业的竟争能力的提高也就取决于机床新品的开发和关键技术的研究、掌握、应用和迅速推广。随着我国加入世界贸易组织和全球经济一体化环境的形成,机床行业的市场竞争将会愈演愈烈。目前,国内外机床产品技术水平之间的差距仍然很大,主要表现为:产品仿制多,创新少,市场竞争力不足,利润低:设计方法落后,机床结构设计,尚处于传统的经验、静态、类比的设计阶段,很少考虑结构动、静态特性对机床产品性能产生的影响,产品精度低,质量难以保证;设计周期长,成功率低,反复设计、试制与修改,产品更新换代慢,且成本高。研究内容轧辊磨床为金属切削机床,由床身、头架、尾架、托架、纵横拖板、磨头、测量架及电气数控系统组成,分为承载系统、驱动系统、磨削系统、测量系统和控制系统五个子系统。工件由头架、尾架和托架支撑,并由头架驱动旋转。数控系统根据轧辊表面母线的数学模型,控制机床作多轴复合运动,在运动过程中实现砂轮对辊面金属的磨削。在线测量系统实时地将测量数据反馈给磨床控制系统,并由控制系统对机床出闭环控制,从而完成对工件的精密加工。床身:采用砂轮床身与工件床身分离的结构。床身调整垫铁间距短,刚性强,床身精度不易变化。砂轮床身为大约为1200mm导轨间距的宽体床身,配备的伸缩式不锈钢防护罩保证永不生锈,安装在砂轮床身内的精密滚珠丝杆,用于驱动大拖板(Z轴)。头架:采用三级三角皮带传动保证了传动的平稳和精度;使用交流主轴电机驱动能使头架实现正向和反向旋转;头架的位置控制功能,可实现拨盘角度自动定位,方便轧辊的吊装,减少辅助时间。头架润滑系统选用了油脂泵,可实现自动定时给油。 尾架:移动采用电动驱动方式,液压自动锁紧。尾架配备大行程(1000mm)液压套筒。砂轮主轴系统:前后径后轴承均采用高精度动静压轴承,主轴轴向采用高精度推力轴承。另外,在后轴承设计中增强了工作腔动静压轴承的静态压力效果,以克服较大皮带拉力对轴瓦造成的损伤。主轴动静压轴承具有回转精度高,稳定性好,动态刚性强,不易振动等特点。 磨架及其进给机构:磨架采用单层整体结构,具有很高的刚性,磨架导轨为贴塑静压导轨,磨架进给机构由带减速装置的西门子交流伺服电机和经过精确预拉伸的精密滚珠丝杆副组成,具有很高的进给精度和灵敏度。拖板(Z轴):拖板采用V-平形形式的贴塑静压导轨,拖板进给机构由带减速装置的西门子交流伺服电机和经过精确预拉伸精密滚珠丝杆副组成,由数控系统通过交流伺服电机和圆光栅实现拖板的闭环位置控制。拖板采用滚珠丝杆传动,与国内外同类磨床所采用的传统齿轮齿条传动相比,具有机械传动链短、运动平稳、传动精度高、间隙小等优点。头架控制系统:头架采用西门子1PH7型交流主轴电机驱动,内装西门子Sine/Cos1Vpp,2048 S/R光电编码器,完成头架速度及位置的闭环控制。头架可实现正向和反向旋转以及拨盘角度自动定位。交流主轴电机的采用使头架电机的维护工作量大大减少。针对轧辊驱动的特点头架采用了低额定转速、大启动扭矩的交流主轴电机,在保证重型轧辊启动需要的同时节约宝贵的能源。砂轮控制系统:砂轮采用西门子1PH7型交流主轴电机驱动,内装西门子Sine/Cos1Vpp,2048 S/R光电编码器,完成砂轮速度及位置的闭环控制。砂轮可实现正向和反向旋转以及角度自动定位。另外,交流主轴电机的采用极大地方便了砂轮电机的维护。砂轮采用了高达100KW的交流主轴电机,保证了磨床具有强力磨削能力,满足用户的轧辊快速大负荷加工要求。 电气控制柜及柜内配电系统和控制元件:为保证磨床电气系统的整体可靠性,从电气控制柜箱壳到柜内的配电系统以及保护元件、开关元件、控制元件全部采用进口的国际名牌产品(西门子、威图)。拟采取的研究方法、技术路线、实验方案及可行性分析通过对MKZ84125自动数控轧辊磨床实地考察,总结得出该磨床的基本结构,工作方式与原理,然后根据考察的结果,再查阅相关书籍后对其进行整体设计的基础,再根据上机磨床厂给定的关于机床的尺寸参数,翻箱动作的具体要求以及大连重工集团有限公司设计的待加工工作辊的相关资料,对在MKZ84125自动数控轧辊磨床上使用的翻箱机构进行设计,进行初步设计。交由指导老师检查,修改。完成后,再对主要载荷部件进行校核。最后出主要零件的零件图,编写设计说明书。可行性分析:轧辊磨床通常是用来磨削工作辊的。由于工作辊在使用过程中磨损较快,平均两到三个小时就要进行修整磨削,否则将达不到所要求的加工精度,所以轧辊磨床除用于在加工工作辊时来磨削工作辊外,还需要在生产中用于对工作辊进行频繁的修磨。当轧辊磨床用于加工工作辊时,工作辊是在没有和其两端的轴承箱体进行装配的情况下,单独在磨床上进行磨削的。而工作辊在使用中两端会装配有轴承箱体,如果对工作辊进行带箱磨削,则由于轴承箱体的结构和存在一定的偏心,在重力作用下摆放的自然位置会和砂轮架发生干涉,使工作辊的工作表面不能得到完整的修磨。因此对工作辊进行修磨前要将轴承箱体拆卸下来,需要耗费大量的时间和人力。由此可见,该课题方案切实可行。研究计划对于本课题,初步确定按以下步骤进行:(1)应先通过查找文献了解机床的基本结构,熟悉机床的具体工作原理;(2)完成整机的总体布局设计,并绘制相应的二维图纸;(3)完成翻箱机构的设计,绘制相应的二维装配图;(4)完成部分零件图设计。预期成果由于工作辊在使用过程中磨损较快,平均两到三个小时就要进行修整磨削,否则将达不到所要求的加工精度,所以轧辊磨床除用于在加工工作辊时来磨削工作辊外,还需要在生产中用于对工作辊进行频繁的修磨。当轧辊磨床用于加工工作辊时,工作辊是在没有和其两端的轴承箱体进行装配的情况下,单独在磨床上进行磨削的。而工作辊在使用中两端会装配有轴承箱体,如果对工作辊进行带箱磨削,则由于轴承箱体的结构和存在一定的偏心,在重力作用下摆放的自然位置会和砂轮架发生干涉,使工作辊的工作表面不能得到完整的修磨。因此对工作辊进行修磨前要将轴承箱体拆卸下来,需要耗费大量的时间和人力。通过对该自动数控轧辊磨床上使用的翻箱机构进行设计,实现在磨削前将轴承箱体从自然位置翻转一定的角度,使其在磨削过程中不再和砂轮架发生干涉,从而实现带箱磨削,可大大提高用户在生产中的效率。已具备的条件和尚需解决的问题 设计过程中所需要的各种软硬件资源和相关产品实物照片。 相关文献资料的缺乏,对一些结构设计部分的具体设计指导,以及一些装配尺寸的确定。指导教师意见指导老师签名: 年 月 日 教研室(学科组、研究所)意见教研室主任签名: 年 月 日系意见教研室主任签名: 年 月 日Fundamentals of Mechanical DesignMechanical design means the design of things and systems of a mechanical naturemachines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences.The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end?Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, of a sensing that something is not right.The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variations in package weight, and by slight but perceptible variations in the quality of the packaging or wrap.There is a distinct difference between the statement of the need and the identification of the problem. Which follows this statement? The problem is more specific. If the need is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts.Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics of the space the thing must occupy and all the limitations on these quantities. We can regard the thing to be designed as something in a black box. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and the reliability.There are many implied specifications which result either from the designers particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designers freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications.After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications.The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract models of the system which will admit some form of mathematical analysis. We call these models mathematical models. In creating them it is our hope that we can find one which will simulate the real physical system very well.Evaluation is a significant phase of the total design process. Evaluation is the final proof of a successful design, which usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the need or needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and adjusted? Can a profit be made from its sale or use?Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted.Basically, there are only three means of communication available to us. There are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, no one will ever know how competent that person is!The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the find analysis, the real failure would lie in deciding not to make the presentation at all.Introduction to Machine DesignMachine design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.People who perform the various functions of machine design are typically called designers, or design engineers. Machine design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes.As stated previously, the purpose of machine design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a particular product is designed.Machine design should be considered to be an opportunity to use innovative talents to envision a design of a product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts or equations which alone can be used to provide all the correct decisions to produce a good design. On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function.Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that is the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what new, untried ideas should be incorporated.New designs generally have “bugs” or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasized that if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.During the beginning stages of design, creativity should be allowed to flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the design which ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Initially the designer must communicate a preliminary design to get management approval. This is usually done by verbal discussions in conjunction with drawing layouts and written material. To communicate effectively, the following questions must be answered:(1) Does the design really serve a human need?(2) Will it be competitive with existing products of rival companies? (3) Is it economical to produce?(4) Can it be readily maintained?(5) Will it sell and make a profit?Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.Quite often, a problem well occur during the manufacturing cycle. It may be that a change is required in the dimensioning or telegramming of a part so that it can be more readily produced. This falls in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way.MachiningTurning The engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in todays production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish and accuracy, are now at the designers fingertips with production speeds on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now, more than ever before, in terms of ability to repeat accurately and rapidly. Applying this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turret lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直线科目三考试题及答案
- 第十一课 动听的声音加进来教学设计-2023-2024学年小学信息技术(信息科技)五年级下册教科版(云南)
- 幼儿园教学教案设计:不玩烟花
- 三、尚贤教学设计-2025-2026学年高中语文人教版选修先秦诸子选读-人教版
- 短视频带货任务活动方案
- 幼儿园防火安全培训心得课件
- 4.1 树与二叉树说课稿-2025-2026学年高中信息技术浙教版2019选修1 数据与数据结构-浙教版2019
- 七年级历史上册 第17课 西晋的短暂统一和北方各族的内迁说课稿 新人教版001
- 电子招标活动方案
- 端午奶粉活动方案
- 维克多高中英语3500词汇
- 工业控制系统安全风险评估(工控安全大检查)
- NY 5052-2001无公害食品海水养殖用水水质
- TSZUAVIA 009.4-2019 多旋翼无人机系统实验室环境试验方法 第4部分:低温试验
- 现状调查培训课件
- 初级社会工作实务全本课件
- 电气试验标准化作业指导书
- 养老机构行政值班查房记录表格
- 练习太极拳的三个阶段
- 华为供应商质量管理体系考察报告(全)
- 冶金工业清洁生产的主要途径(共82页).ppt
评论
0/150
提交评论