全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面图形的周长和面积的复习 教学目标:1引导学生回忆整理平面图形的周长和面积的计算公式及推导过程,并能熟练的应用公式进行计算。2引导学生探索知识间的相互联系,构建知识网络,从而加深对知识的理解,并从中学习整理知识,领会学习方法。3渗透“事物之间是相互联系”的辨证唯物主义观点,“转化”等思想方法;体验数学与生活的联系,在实际生活中的运用。重点、难点:1. 复习计算公式及推导过程,并能熟练的应用公式进行计算。2. 探索计算公式间的内在联系,构建知识网络。教学准备:课件、学生课前准备好的平面图形的周长和面积计算公式教 学 过 程:一、引入师:今天,我们要上一堂复习课。看一看,我们要复习什么?生:平面图形的周长和面积师:那我们学过的平面图形都有哪些?生:长方形、正方形、平行四边形、三角形、梯形、圆。 (生说边说边将图片贴在黑板)师:这节课,我们是要复习它们的(周长和面积)二、复习平面图形的周长和面积含义师:关于周长,你觉得应从哪些方面进行复习呢?生:意义,计量单位,公式(边说边板书)师:那行,我们就围绕这3个问题开始复习。师:什么是周长?生:周长是指围绕封闭图形一周的长度。师:很完整,来,一起说。生:周长是围绕封闭图形一周的长度。(课件显示)师:没错,周长就是围绕封闭图形一周的(长度)师:既然周长是长度,那它常用的计量单位都有哪些?生:千米,米,分米,厘米,毫米师:同意吗?是的,周长用的就是这些长度单位。师:最后一个问题,谁来?生回答长方形、正方形和圆的周长公式师并板书师:那剩下的3个图形,怎么计算它的周长?生:只要将围成这个图形的所有边长加起来就行了。师:没错,我们只需要把它每条边加起来就可以了。会说,还要会做,一起来练一练(课件)完成后生汇报师:刚才,我们从这3个方面对周长进行了复习,那关于面积的复习,能自己解决吗?那就在小组内讨论,讨论,小组长做好记录。师:谁来汇报一下你们的复习成果?生汇报师:你们听明白了吗?他们小组是从哪几个方面复习面积的?生:面积的意义、计量单位和公式。三、平面图形的面积计算公式的推倒过程。师:那这些面积公式是怎样推导出来的?它们之间又有怎样的联系?这样吧,我们亲自动手操作操作,请看活动要求。(课件)请四人小组讨论,小组中的每位同学任选1至2种图形,和同组同学交流一下面积公式的推导过程。)师:谁来读?(请生读要求)师:都明白要求了吗?开始。(生以小组为单位讨论六个图形的面积公式的推导过程)师:可以了吗?那请你选一个你最熟悉的图形,给大家说一说,它的面积公式是怎样推导出来的?(生汇报)长方形我们是用数方格的方法得出长方形的面积。长方形的面积=长宽,用字母表示:s=ab师:说的真好,1平方厘米小正方形的个数相当于长方形的面积,每排个数相当于长方形的长,排数相当于长方形的宽,因为小正方形的个数=每排个数排数,所以长方形的面积=长宽。正方形的面积公式又是如何推导的呢?正方形是长和宽都相等的长方形,因为长方形的面积=长宽,所以正方形的面积=边长边长,用字母表示:S=a谁来说说平行四边形面积的推导过程?生:平行四边形的面积公式是把平行四边形转化成长方形,再利用长方形的面积公式推导出平行四边形的面积公式。师:我们是把平行四边形,沿他的一条高剪开后,通过割补平移,转化为一个长方形。长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。因为长方形的面积=长宽,所以平行四边形的面积=底高。用字母表示:s=ah谁来说说三角形面积的推导过程?生:把两个大小、形状完全一样的三角形旋转平移,拼成一个平行四边形。平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高。因为平行四边形的面积=底高,所以三角形的面积=底高2。用字母表示:s=ah2谁来说说梯形面积的推导过程?把两个大小、形状完全一样的梯形旋转平移,拼成一个平行四边形。平行四边形的底相当于梯形的上底与下底之和,平行四边形的高相当于梯形的高。因为平行四边形的面积=底高,所以梯形的面积=(上底+下底)高2。用字母表示:s=(a+b)h2谁来说说圆面积的推倒过程?生:把圆切拼成一个近似的长方形,然后用长方形的面积公式推出圆的面积公式。师:圆的面积公式是将一个圆沿一条直径平均分成两半,再把两个半圆都等分成若干等份,就拼成一个近似的长方形,长方形的长等于圆周长的一半,长方形的宽等于圆的半径。因为长方形的面积=长宽,所以圆的面积=圆周长的一半半径。用字母表示:S= r 。四、复习平面图形的面积计算公式之间的转化关系。师:我们都清楚了这些面积公式的推导过程,你们有没有发现,它们都用到了一种重要的数学思想,是什么?生:转化。师:没错,转化是我们进行数学研究的一种重要思想。师:好了,让我们再次把目光锁定到这6个图形上。仔细思考,它们之间到底存在着怎样的联系?和你的同桌说一说。生交流师:有结果了吗?谁愿意来根据你们找到的联系,把这些图形重新摆一摆。生上台摆图形师:给大家说说你这样摆的理由。师:你能不能用箭头把这种联系表现得更清楚。师:谁能看明白?请你说一说。你们也有同样的想法吗?师:非常棒!你们看,简简单单的一幅结构图,就把这么多的图形,之间的联系表示得清清楚楚。师:刚才我们通过回顾公式的推导过程,勾通这些知识之间的联系,下面我们来练习,在练习的过程中,相信你会有新的想法。五、沟通梯形面积公式的概括性师:请你把题读一读。师:会做吗?快速算一算。师:有结果了吗?谁来汇报一下。师:同意吗?我们继续。如果把这个梯形的上底增加3厘米,下底减少3厘米,得到的图形面积会是多少?师:这么快!说说你的想法。生1:因为上底增加3厘米,下底减少3厘米,相互抵消,所以它的面积依然是21平方厘米。师:你们能听明白他的意思吗?上、下底都变了,为什么面积却没有变化呢?生2:因为抵消了。师:也就是说上、下底虽然在变,但它们的和不变。师:也就是说你们仍然是用(上底+下底)乘高除以2来计算它的面积的,是吗?师:额,上底增加3厘米,下底减少3厘米,得到图形会是怎样的呢?能想到吗?仔细观察!师:你有什么发现?(梯形变成了平行四边形)师:说明了什么?师:回顾一下,你们刚才是哪个公式计算它的面积的?师:看来,我们不仅可以用梯形的面积公式来计算梯形的面积,还可以用梯形的面积公式来计算平行四边形的面积。师:大胆的想一想,还有哪些图形的面积也可以用梯形的面积公式来计算?预设生1:长方形师:(出示长方形课件)我们一起来通过计算验证验证。用长方形的面积公式怎样列式?结果是?用梯形的面积公式怎样列式?结果呢?看来,可以吗?既然这个公式适用于长方形,那肯定也适用于正方形。那适用于三角形吗?来看第三题。预设生2:三角形师:说说你的想法生:师:能明白他的意思吗?一起来看第3个问题。仔细观察,你发现了什么?说明了什么?那我们通过计算来验证验证。用三角形的面积公式怎样列式?结果是?用梯形的面积公式怎样列式,结果呢?梯形的面积公式也适用于三角形的面积计算。师:小结:看来,长方形、正方形、平行四边形、三角形的面积都可以用梯形的面积公式来计算。(板书:箭头)师:那圆的面积和梯形的面积有没有联系呢?一起来看。(课件演示)师:把一个圆平均分成八等份,再拼成一个近似的梯形,仔细观察,它的上底就是八分之一C,也就是四分之一r,下底是八分之三C,也就是四分之三r,高就是2r。根据梯形的面积公式:四分之一r加四分之三r的和乘2r再除以2,结果就是r的平方。看来,圆的面积和梯形的面积有没有联系?师:看来梯形的面积和这些图形的面积还有这样,深层次的联系。在做题中只要用心观察、用心思考,就会有新的发现。师:分别比较下面两组图形的周长和面积,在每组中两个图形的周长相等吗?面积相等吗?生:第一组面积相等,周长不等;第二组周长相等,面积相等。师:你们同意吗?那说明了什么?面积相等的两个图形,周长不一定相等;第二组图形呢?师:太厉害了,你们又有了新的发现。我们继续下一个练习。师:会算吗?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石桥修缮协议书范本
- 的模具购销合同范本
- 眼镜总代理合同范本
- 砂石厂租赁合同范本
- 签合同装修期签协议
- 租舞台设备合同协议
- 石油供货协议书范本
- 绿化工劳动合同范本
- 私人合作入股协议书
- 电脑试销协议书范本
- 广东省佛山市石门中学2025届八上数学期末达标检测模拟试题含解析
- 职高高二家长会课件
- 简易工况法培训课件
- 牛饲养与饲料加工技术考核试卷
- 2025年初级人工智能训练师(五级)资格理论考试题库(含答案)
- 取硅油眼术后护理
- 2025年安徽省C20教育联盟中考一模物理试题(原卷版+解析版)
- 2025年全国硕士研究生入学统一考试 (数学二) 真题及解析
- 食堂整改方案
- 智慧校园网络建设预算
- 矿山机械运用与维护专业实习报告范文
评论
0/150
提交评论