排列组合着色问题2.docx_第1页
排列组合着色问题2.docx_第2页
排列组合着色问题2.docx_第3页
排列组合着色问题2.docx_第4页
排列组合着色问题2.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

排列组合专题之染色问题【引例】引例1在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种同一种植物,相邻的两块种不同的植物现有四种不同的植物可供选择,则有_种栽种方案引例2某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种(以数字作答)【分析】首先栽种第1部分,有种栽种方法;然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如右图所示),此问题和引例1是同一题型,因此我们有必要对这一题型的解法做一深入探讨。【剖析】为了深入探讨这一题型的解法,(1)让我们首先用m(m3)种不同的颜色(可供选择),去涂4个扇形的情形(要求每一个扇形着一种颜色,相邻扇形着不同颜色),如图所示以1和3(相间)涂色相同与否为分类标准:1和3涂同一种颜色,有m种涂法;2有m-1种涂法,4也有m-1种涂法, 共有 种涂法。1和3涂不同种颜色,有种涂法;2有m-2种涂法,4也有m-2种涂法, 共有 种涂法。综合和,共有+种涂法。()下面来分析引例1以A、C、E(相间)栽种植物情况作为分类标准:A、C、E栽种同一种植物,有4种栽法;B、D、F各有3种栽法, 共有 4333108 种栽法。A、C、E栽种两种植物,有种栽法(是4种植物中选出2 种,是A、C、E3个区域中选出2个区域栽种同一种植物,是选出的2种植物排列),B、D、F共有322 种栽法(注:若A、C栽种同一种植物,则B有3 种栽法,D、F各有2种栽法), A、C、E栽种3种植物,有种栽法;B、D、F各有2种栽法, 共有 222192 种栽法。综合、,共有 108+432+192=732种栽法。()上述(1)、(2)给出了“设一个圆分成P1,P2,Pn,共n(n为偶数)个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法”这类问题的一般解题思路:即以相间扇形区域的涂色情况作为分类标准,再计算其余相间扇形区域的涂色种数。(4)那么,“设一个圆分成P1,P2,Pn,共n(n为奇数)个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法” 这类问题的解题思路又如何呢?【分析】 对扇形P1有m种涂色方法,扇形P2有m1种涂色方法,扇形P3也有m1种涂色方法,扇形Pn也有m1种涂色方法于是,共有种不同的涂色方法。但是,这种涂色方法可能出现P1与Pn着色相同的情形,这是不符合题意的,因此,答案应从中减去这些不符合题意的涂色方法。那么,这些不符合题意的涂色方法,又怎样计算呢?这时,把P1与Pn看作一个扇形,其涂色方法相当于用m种颜色对n1(n1为偶数)个扇形涂色(这种转换思维相当巧妙)。而用m种颜色对偶数个扇形的涂色问题,已在上述的()中给出了解题思路。下面,就让我们把这种解题思路应用于 引例2【分析】首先栽种第1部分,有种栽种方法;然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分 (如右图所示), 对扇形2有3种栽种方法,扇形3有2种栽种方法,扇形4也有2种栽种方法,扇形5也有2种栽种方法,扇形6也有2种栽种方法于是,共有种不同的栽种方法。但是,这种栽种方法可能出现区域2与6着色相同的情形,这是不符合题意的,因此,答案应从中减去这些不符合题意的栽种方法。这时,把2与6看作一个扇形,其涂色方法相当于用3种颜色的花对4个扇形区域栽种(这种转换思维相当巧妙)。而用3种颜色的花对4个扇形区域的栽种问题,已在上述的(1)中解决了。综合和,共有种栽法。(当然此式中的18也可以直接用(1)中的公式算出:即).【拓展】上面,我们分别就n为偶数和奇数给出了“设一个圆分成P1,P2,Pn,共n个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法” 这类问题的解题思路。那么,这类问题有没有更为一般的解法(即通法)呢?(n为不小于3的整数)【分析】设为符合要求的对n个扇形的涂色方法。对扇形P1有m种涂色方法,扇形P2有m1种涂色方法,扇形P3也有m1种涂色方法,扇形Pn也有m1种涂色方法于是,共有种不同的涂色方法。但是,因为这种涂色方法可能出现P1与Pn着色相同的情形,这是不符合题意的,因此,答案应从中减去这些不符合题意的涂色方法。那么,这些不符合题意的涂色方法,又怎样计算呢?这时,把P1与Pn看作一个扇形,其涂色方法相当于用m种颜色对n1个扇形涂色(这种转换思维相当巧妙),不同的涂色方法有种,于是,有(n3), 显然,上述的式就是数列的递推公式,由此,我们就可以推导出的通项公式:至此,我们就找到了“设一个圆分成P1,P2,Pn,共n个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法” 这类问题的通项公式:即【注意】上述问题中的m种颜色是可供选择的,而不是全部都要用上的。【迁移练习】1某城市在中心广场建造一个花圃,花圃分为6个部分(如图),每部分栽种一种且相邻部分不能栽种同样颜色的花,现有5种不同颜色的花可供选择,则不同的栽种方法有_种; 若要求5种不同颜色的花全部栽种,则不同的栽种方法有_种(以数字作答)2在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种同一种植物,相邻的两块种不同的植物现有四种不同的植物可供选择,则有_种栽种方案;若要求四种不同的植物全部栽种,则有_种栽种方案【答案】11200,600; 2732,480。例解排列组合中涂色问题于涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。一、 区域涂色问题1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。例1、 用5种不同的颜色给图中标、的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给号区域涂色有5种方法,再给号涂色有4种方法,接着给号涂色方法有3种,由于号与、不相邻,因此号有4种涂法,根据分步计数原理,不同的涂色方法有2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。2分析:依题意只能选用4种颜色,要分四类:(1)与同色、与同色,则有;(2)与同色、与同色,则有;(3)与同色、与同色,则有;(4)与同色、与同色,则有;(5)与同色、与同色,则有;所以根据加法原理得涂色方法总数为5=120例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色243151) 当先用三种颜色时,区域2与4必须同色,2) 区域3与5必须同色,故有种;3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有种;若区域3与5同色,则区域2与4不同色,有种,故用四种颜色时共有2种。由加法原理可知满足题意的着色方法共有+2=24+224=723、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1234分析:可把问题分为三类:(1) 四格涂不同的颜色,方法种数为;(2) 有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色,涂法种数为;5) 两组对角小方格分别涂相同的颜色,涂法种数为,因此,所求的涂法种数为4、 根据相间区使用颜色的种类分类ABCDEF例5如图, 6个扇形区域A、B、C、D、E、F,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可解(1)当相间区域A、C、E着同一种颜色时,有4种着色方法,此时,B、D、F各有3种着色方法,此时,B、D、F各有3种着色方法故有种方法。 (2)当相间区域A、C、E着色两不同的颜色时,有种着色方法,此时B、D、F有种着色方法,故共有种着色方法。 (3)当相间区域A、C、E着三种不同的颜色时有种着色方法,此时B、D、F各有2种着色方法。此时共有种方法。故总计有108+432+192=732种方法。说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。 如:如图,把一个圆分成个扇形,每个扇形用红、白、蓝、黑四色之一染色,要求相邻扇形不同色,有多少种染色方法?解:设分成n个扇形时染色方法为种(1) 当n=2时、有=12种,即=12(2) 当分成n个扇形,如图,与不同色,与 不同色,与不同色,共有种染色方法, 但由于与邻,所以应排除与同色的情形;与同色时,可把、 看成一个扇形,与前个扇形加在一起为个扇形,此时有种染色法,故有如下递推关系: 二、 点的涂色问题方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色分类讨论,(3)将空间问题平面化,转化成区域涂色问题。例6、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?解法一:满足题设条件的染色至少要用三种颜色。(1) 若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任选两种涂A、B、C、D四点,此时只能A与C、B与D分别同色,故有种方法。(2) 若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A与B,由于A、B颜色可以交换,故有种染法;再从余下的两种颜色中任选一种染D或C,而D与C,而D与C中另一个只需染与其相对顶点同色即可,故有种方法。(3) 若恰用五种颜色染色,有种染色法综上所知,满足题意的染色方法数为60+240+120=420种。 解法二:设想染色按SABCD的顺序进行,对S、A、B染色,有种染色方法。 由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论: C与A同色时(此时C对颜色的选取方法唯一),D应与A(C)、S不同色,有3种选择;C与A不同色时,C有2种选择的颜色,D也有2种颜色可供选择,从而对C、D染色有种染色方法。 由乘法原理,总的染色方法是SCDAB解法三:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法?解答略。三、 线段涂色问题对线段涂色问题,要注意对各条线段依次涂色,主要方法有:1) 根据共用了多少颜色分类讨论2) 根据相对线段是否同色分类讨论。例7、用红、黃、蓝、白四种颜色涂矩形ABCD的四条边,每条边只涂一种颜色,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解法一:(1)使用四颜色共有种(2)使用三种颜色涂色,则必须将一组对边染成同色,故有种,(3)使用二种颜色时,则两组对边必须分别同色,有种因此,所求的染色方法数为种解法二:涂色按ABBCCDDA的顺序进行,对AB、BC涂色有种涂色方法。由于CD的颜色可能与AB同色或不同色,这影响到DA颜色的选取方法数,故分类讨论:当CD与AB同色时,这时CD对颜色的选取方法唯一,则DA有3种颜色可供选择CD与AB不同色时,CD有两种可供选择的颜色,DA也有两种可供选择的颜色,从而对CD、DA涂色有种涂色方法。由乘法原理,总的涂色方法数为种例8、用六种颜色给正四面体的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法? 解:(1)若恰用三种颜色涂色,则每组对棱必须涂同一颜色,而这三组间的颜色不同,故有种方法。(2)若恰用四种颜色涂色,则三组对棱中有二组对棱的组内对棱涂同色,但组与组之间不同色,故有种方法。 (3)若恰用五种颜色涂色,则三组对棱中有一组对棱涂同一种颜色,故有种方法。 (4)若恰用六种颜色涂色,则有种不同的方法。 综上,满足题意的总的染色方法数为种。四、 面涂色问题例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?分析:显然,至少需要3三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论解:根据共用多少种不同的颜色分类讨论(1)用了六种颜色,确定某种颜色所涂面为下底面,则上底颜色可有5种选择,在上、下底已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案,根据乘法原理(2)共用五种颜色,选定五种颜色有种方法,必有两面同色(必为相对面),确定为上、下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论