排列组合学案.doc_第1页
排列组合学案.doc_第2页
排列组合学案.doc_第3页
排列组合学案.doc_第4页
排列组合学案.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课 题:102排列 (一)例1计算:(1); (2); (3)例2(1)若,则 , (2)若则用排列数符号表示 例3(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?课堂练习: 1四支足球队争夺冠、亚军,不同的结果有() 种 10种 12种 16种2信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有( )3种 6种 1种 27种3且则用排列数符号表示为( ) 45人站成一排照相,甲不站在排头的排法有( ) 24种 72种 96种 120种5给出下列问题:有10个车站,共需要准备多少种车票?有10个车站,共有多少中不同的票价?平面内有10个点,共可作出多少条不同的有向线段?有10个同学,假期约定每两人通电话一次,共需通话多少次?从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?以上问题中,属于排列问题的是 (填写问题的编号)6若 ,则以为坐标的点共有 个7从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不同的方法?8从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?9计算:(1) (2)10分别写出从这4个字母里每次取出两个字母的所有排列;11写出从这六个元素中每次取出3个元素且必须含有元素的所有排列课 题:102排列 (二)例1计算:; 例2解方程:3 例3解不等式:例4求证:(1);(2)说明:(1)解含排列数的方程和不等式时要注意排列数中,且这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式常用来求值,特别是均为已知时,公式=,常用来证明或化简例5化简:;说明:课堂练习: 1若,则 ( ) 2与不等的是 ( ) 3若,则的值为 ( ) 4计算: ; 5若,则的解集是 6(1)已知,那么 ;(2)已知,那么= ;(3)已知,那么 ;(4)已知,那么 7一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?课 题:102排列 (三)例1(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算例2某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例3将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?分析:解决这个问题可以分为两步,第一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,利用分步计数原理即得分配方案的种数例4用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法1:用分步计数原理:解法2:解法3:说明:解决排列应用题,常用的思考方法有直接法和间接法直接法:通过对问题进行恰当的分类和分步,直接计算符合条件的排列数如解法1,2;间接法:对于有限制条件的排列应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再减去不符合限制条件的情况种数如解法3对于有限制条件的排列应用题,要恰当地确定分类与分步的标准,防止重复与遗漏例5(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):解法2:(排除法)说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑课堂练习:1将1,2,3,4填入标号为1,2,3,4的四个方格里,没格填一个数字,则每个方格的标号与所填的数字均不相同的填法( )种. 6 9 11 232有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不能停在第一条轨道上,则五列火车的停车方法有( )种.78 72 120 96 3由0,3,5,7这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个( )9 21 24 42 4从七个数中,每次选不重复的三个数作为直线方程的系数,则倾斜角为钝角的直线共有( )条. 14 30 70 60 5从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 _种不同的种植方法 69位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 种7(1)由数字1,2,3,4,5可以组成多少个无重复数字的正整数? (2)由数字1,2,3,4,5可以组成多少个无重复数字,并且比13000大的正整数?8学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位置,2个曲艺节目要求排在第4、8的位置,共有多少种不同的排法?9某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?10一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有多少种不同的排法?11. 由数字0,1,2,3,4,(1)可组成多少个没有重复数字且比20000大的自然数?(2)2不在千位,且4不在十位的五位数有多少个? 小结 :分析和解决排列问题的基本方法;对于“在”与“不在”的问题的处理方法 课 题:102排列 (四)例1 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑) 解法二:(从特殊元素考虑) 解法三:(间接法)例2 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一: 解法二: 解法三: (4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起说明:对于相邻问题,常用“捆绑法”(先捆后松)例37位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)解法二:(插空法)(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?说明:对于不相邻问题,常用“插空法”(特殊元素后考虑)例45男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)(2)方法1: 方法2:三、课堂练习:1停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数为 2五种不同商品在货架上排成一排,其中两种必须连排,而两种不能连排,则不同的排法共有 36张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有 4某人射出8发子弹,命中4发,若命中的4发中仅有3发是连在一起的,那么该人射出的8发,按“命中”与“不命中”报告结果,不同的结果有( )720种480种 24种 20种 5设且,则在直角坐标系中满足条件的点共有 个67人站一排,甲不站排头,也不站排尾,不同的站法种数有 种;甲不站排头,乙不站排尾,不同站法种数有 种7一部电影在相邻5个城市轮流放映,每个城市都有3个放映点,如果规定必须在一个城市的各个放映点放映完以后才能转入另一个城市,则不同的轮映次序有 种(只列式,不计算)8一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有 种9某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?10用数字0,1,2,3,4,5组成没有重复数字的四位数,其中(1)三个偶数字连在一起的四位数有多少个?(2)十位数字比个位数字大的有多少个?11在上题中,含有2和3并且2和3不相邻的四位数有多少个?小结 :1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻)2基本的解题方法:有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基 课 题:103组合 (一)例1计算:(1); (2); (1)解: (2)解法1: 解法2:例2求证:例3设 求的值例4(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?错解:种选法引导学生用直接法检验,可知重复的很多例54名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)解法二:(间接法)课堂练习: 1判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( ) 3如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) 对 对 对 对4设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( ) 5从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法6从位同学中选出人去参加座谈会,有 种不同的选法7圆上有10个点:(1)过每2个点画一条弦,一共可画 条弦;(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形8(1)凸五边形有 条对角线;(2)凸五边形有 条对角线9计算:(1);(2)10个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种? 11空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?12壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?13写出从这个元素中每次取出个的所有不同的组合小结 :组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理 课 题:103组合 (二)例1一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?例2(1)计算:;(2)求证:+例3解方程:(1);(2)解方程:课堂练习:1方程的解集为( ) 2式子()的值的个数为 ( ) 3化简: ; 4若,则的值为 ;5有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;6要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是 ;75名工人分别要在3天中选择1天休息,不同方法的种数是 ;8集合有个元素,集合有个元素,从两个集合中各取出1个元素,不同方法的种数是 9从这个数中选出2个不同的数,使这两个数的和为偶数,有_ 种不同选法10正12边形的对角线的条数是 11已知,求的值; 12解方程:136人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?14在所有的三位数中,各位数字从高到低顺次减小的数共有 个小结 :组合数的两个性质;从特殊到一般的归纳思想;常用的等式: 课 题:103组合 (三)例1100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件(1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种?(4)抽出的3件中至少有1件是次品的取法有多少种?解法一:(直接法) 解法二:(间接法)例2从编号为1,2,3,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法? 例3现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其 中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?例4甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)解法二:分为两类:例56本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?课堂练习:1有两条平行直线和,在直线上取个点,直线上取个点,以这些点为顶点作三角形,这样的三角形共有( ) 2名同学分别到三个不同的路口进行车流量的调查,若每个路口人,则不同的分配方案有 ( )种 3本不同的书,全部分给个学生,每个学生至少一本,不同分法的种数为 4已知甲、乙两组各有人,现从每组抽取人进行计算机知识竞赛,比赛成员的组成共有 种可能 5在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,第3题的2个小题中选做1个小题,有 种不同的选法6从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成 个没有重复数字的五位数7正六边形的中心和顶点共个点,以其中三个点为顶点的三角形共有 个8从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法;(2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法;(4)如果4人中必须既有男生又有女生,有 种选法9在200件产品中,有2件次品从中任取5件,(1)“其中恰有2件次品”的抽法有 种;(2)“其中恰有1件次品”的抽法有 种;(3)“其中没有次品”的抽法有 种;(4)“其中至少有1件次品”的抽法有 种10某科技小组有名同学,现从中选出人去参观展览,至少有名女生入选时的不同选法有种,求该科技小组中女生的人数小结 :排列、组合问题解题方法比较灵活,问题思考的角度不同,就会得到不同的解法.若选择的切入角度得当,则问题求解简便,否则会变得复杂难解.教学中既要注意比较不同解法的优劣,更要注意提醒学生体会如何对一个问题进行认识思考,才能得到最优方法五、课后作业:1以一个正方体的顶点为顶点的四面体共有 个 2以一个正方体的8个顶点连成的异面直线共有 对36本不同的书全部送给5人,有多少种不同的送书方法?5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?课后记:在世界杯足球比赛中,五大洲共有32支球队有幸参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、四名,问这次世界杯总共将进行多少场比赛?课 题:103组合 (四)例16本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本 例2身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?解:(1)(法一):(法二): (2)(插空法)例3(1) 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2) 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)(2)(捆绑法)例4马路上有编号为1,2,3,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)例5九张卡片分别写着数字0,1,2,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?课堂练习: 1某班元旦联欢会原定的个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为 2从人中选派人到个不同的交通岗的个中参加交通协管工作,则不同的选派方法有 ( ) 3某班分成个小组,每小组人,现要从中选出人进行个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( ) 45个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 5某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法6一个集合有5个元素,则该集合的非空真子集共有 个7平面内有两组平行线,一组有条,另一组有条,这两组平行线相交,可以构成 个平行四边形8空间有三组平行平面,第一组有个,第二组有个,第三组有个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体9在某次数学考试中,学号为的同学的考试成绩,且满足,则这四位同学的考试成绩的所有可能情况有 种10某人制订了一项旅游计划,从个旅游城市中选择个进行游览如果其中的城市、必选,并且在旅游过程中必须按先后的次序经过、两城市(、两城市可以不相邻),则不同的游览路线有 种11高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法12某兴趣小组有名男生,名女生:(1)从中选派名学生参加一次活动,要求必须有名男生,名女生,且女生甲必须在内,有 种选派方法;(2)从中选派名学生参加一次活动, 要求有女生但人数必须少于男生,有_种选派方法;(3)分成三组,每组人,有 种不同分法小结 :1按元素的性质进行分类、按事件发生的连续过程分步,是处理组合应用题的基本思想方法;2对于有限制条件的问题,要优先安排特殊元素、特殊位置;3对于含“至多”、“至少”的问题,宜用排除法或分类解决;4需要注意的是,均匀分组(不计组的顺序)问题不是简单的组合问题,如:将个人分成 组,每组一个人,显然只有种分法,而不是种 一般地,将个不同元素均匀分成组,有种分法;5按指定的一种顺序排列的问题,实质是组合问题 课 题:103组合 (五)例1某考生打算从所重点大学中选所填在第一档次的个志愿栏内,其中校定为第一志愿;再从所一般大学中选所填在第二档次的三个志愿栏内,其中、两校必选,且在前问:此考生共有多少种不同的填表方法?解:例2如图是由12个小正方形组成的矩形网格,一质点沿网格线从点到点的不同路径之中,最短路径有 条例3圆周上有个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是多少?变式:本题构造了四边形以求得满足条件的交点,类似的,前面讲过一个问题:以一个正方体的8个顶点连成的异面直线共有 对例4有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?例5在一次象棋比赛中,进行单循环比赛其中有人,他们各赛了场后,因故退出了比赛,这样,这次比赛共进行了场,问:比赛开始时参赛者有多少人?课堂练习: 1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点向结点传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 ( ) 2学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( ) 33名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有( ) 4公共汽车上有位乘客,汽车沿途停靠个站,那么这位乘客不同的下车方式共有 种;如果其中任何两人都不在同一站下车,那么这位乘客不同的下车方式共有 种5名男生和名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起 ; (2)女生互不相邻 ;(3)男女生相间 ; (4)女生按指定顺序排列 6有排成一行的个空位置,位女生去坐,要求任何两个女生之间都要有空位,共有 种不同的坐法7赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法8位同学进行网页设计比赛,决出了第1至第5名的名次、两位同学去询问名次,主考官对说:“很遗憾,你和都未拿到冠军”;对说:“你当然不会是最差的”从这个回答分析,位同学的名次排列共可能有 种不同的情况9学校餐厅供应客饭,每位学生可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位学生有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜种10有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到测出只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有 _种11圆周上有个等分点,以其中3个点为顶点的直角三角形的个数为 个小结 :1解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解决一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的错误是遗漏和重复计数;2解决计数问题的常用策略有:(1)特殊元素优先安排;(2)排列组合混合题要先选(组合)后排;(3)相邻问题捆绑处理(先整体后局部);(4)不相邻问题插空处理;(5)顺序一定问题除法处理;(6)正难则反,合理转化 课 题:104二项式定理(一)例1展开例2展开例3求的展开式中的倒数第项例4求(1),(2)的展开式中的第项点评:,的展开后结果相同,但展开式中的第项不相同例5(1)求的展开式常数项;(2)求的展开式的中间两项课堂练习:1.求的展开式的第3项.2.求的展开式的第3项.3.写出的展开式的第r+1项.4.求的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1);(2).6.化简:(1);(2) 7展开式中的第项为,求 8求展开式的中间项小结 :二项式定理的探索思路:观察归纳猜想证明;二项式定理及通项公式的特点 课 题:104二项式定理(二)例1(1)求的展开式的第四项的系数;(2)求的展开式中的系数及二项式系数例2求的展开式中的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,也可以先把三项式分解成两个二项式的积,再用二项式定理展开例3已知 的展开式中含项的系数为,求展开式中含项的系数最小值分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解例4已知的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项课堂练习:1展开式中常数项是( )A.第4项 B. C. D.22(x1)11展开式中x的偶次项系数之和是( )A.-2048 B.-1023 C.-1024 D.10243展开式中有理项的项数是( )A.4 B.5 C.6 D.74设(2x-3)4=,则a0+a1+a2+a3的值为( ) A.1 B.16 C.-15 D.155展开式中的中间两项为( )A. B. C. D.6在展开式中,x5y2的系数是 7 8. 的展开式中的有理项是展开式的第 项9(2x-1)5展开式中各项系数绝对值之和是 10展开式中系数最大的项是 小结 :1三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性;2求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 课 题:104二项式定理(三)例1在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和说明:由性质(3)及例1知.例2已知,求:(1); (2); (3).例3.求(1+x)+(1+x)2+(1+x)10展开式中x3的系数例4.在(x2+3x+2)5的展开式中,求x的系数例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项课堂练习:(1)的展开式中二项式系数的和为 ,各项系数的和为 ,二项式系数最大的项为第 项;(2)的展开式中只有第六项的二项式系数最大,则第四项为 (3)+,则( )AB.C.D.(4)已知:,求:的值 小结 :1性质是组合数公式的再现,性质是从函数的角度研究的二项式系数的单调性,性质是利用赋值法得出的二项展开式中所有二项式系数的和;2因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法 后记: 求的近似值,使误差小于课 题:104二项式定理(四)例1 设,当时,求的值点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系例2求证:例3已知:的展开式中,各项系数和比它的二项式系数和大(1) 求展开式中二项式系数最大的项;(2)求展开式中系数最大的项例4已知,求证:当为偶数时,能被整除分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式 课堂练习:1展开式中的系数为 ,各项系数之和为 2多项式()的展开式中,的系数为 3若二项式()的展开式中含有常数项,则的最小值为( ) A.4 B.5 C.6 D.84某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( ) A.低于5 B.在56之间 C.在68之间 D.在8以上5在的展开式中,奇数项之和为,偶数项之和为,则等于( )A.0 B. C. D.6求和:7求证:当且时,8求的展开式中系数最大的项 小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用 课后作业:1已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值2设求: 3求值:4设,试求的展开式中:(1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和课 题:小结与复习 (一)一、知识点: 1分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 3排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式:()6阶乘:表示正整数1到的连乘积,叫做的阶乘规定7排列数的另一个计算公式:= 8组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合9组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示10组合数公式:或11 组合数的性质1:规定:; 12组合数的性质2:+ 二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有_个.(答案:30个)科学分类法对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_种.(答案:350)插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是_.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是_种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法.b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合0,1,2,3,5,7,11中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_条.(答案:30)三、讲解范例:例1 由数字、组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数例 将、分成三组,共有多少种不同的分法?例 一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?四、课堂练习:1.从1、2、3、4、20中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( )90个 (B)180个 (C)200个 (D)120个2.男女学生共有8 人,从男生中选取2人,且从女生中选取1人,共有30种不同的选法,其中女生有( )2人或3人 (B)3人或4人 (C)3人 (D)4人3.从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个小球,使这5个小球的编号之和为奇数,其方法总数为( )(A)200 (B)230 (C)236 (D)2064.兰州某车队有装有A,B,C,D,E,F六种货物的卡车各一辆,把这些货物运到西安,要求装A种货物,B种货物与E种货物的车,到达西安的顺序必须是A,B,E(可以不相邻,且先发的车先到),则这六辆车发车的顺序有几种不同的方案( ) (A)80 (B)120 (C)240 (D)3605.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( )(A)48 (B)36 (C)28 (D)126.某药品研究所研制了5种消炎药4种退烧药现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知两种药必须同时使用,且两种药不能同时使用,则不同的实验方案有( )(A)27种 (B)26种 (C)16种 (D)14种7.某池塘有A,B,C三只小船,A船可乘3人,B船可乘2 人,C船可乘1 人,今天3个成人和2 个儿童分乘这些船只,为安全起见,儿童必须由成人陪同方能乘船,他们分乘这些船只的方法共有( )120种 (B)81种 (C)72种 (D)27种8.梯形的两条对角线把梯形分成四部分,有五种不同的颜色给这四部分涂色,每一部分涂一种颜色,任何相邻(具有公共边)的两部分涂不同的颜色,则不同的涂色方法有( )180种 (B)240种 (C)260种 (D)320种9.将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的方阵,要求每一竖列的三个数从前到后都是由从小到大排列,则不同的排法种数是_10.10个相同的小球放入编号为1,2,3的三个盒子内,要求每个盒子的球数不小于它的编号数,则不同的放法共有种,11.过正方体的每三个顶点都可确定一个平面,其中能与这个正方体的12条棱所成的角都相等的不同平面的个数为个12.从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同的排列共有( )120个 (B)480个 (C)720个 (D)840个13.将5枚相同的纪念邮票和8张相同的明信片作为礼品送给甲、乙两名学生,全部分完且每人至少有一件礼品,不同的分法是( )(A)52 (B)40 (C)38 (D)11五、小结 :个不同的元素必须相邻,有 种“捆绑”方法个不同元素互不相邻,分别“插入”到个“间隙”中的个位置有 种不同的“插入”方法个相同的元素互不相邻,分别“插入”到个“间隙”中的个位置,有 种不同的“插入”方法若干个不同的元素“等分”为 个组,要将选取出每一个组的组合数的乘积除以 六、课后作业: 1. 有1元、2元、5元、50元、100元的人民币各一张,取其中的一张或几张,能组成多少种不同的币值? 7个电阻串联在一起连成一串,中间只要有一个坏了,这串电阻就失效,因电阻损坏而失效的可能性种数是多少? 2 在的展开式中,求:二项式系数的和;各

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论