(全国通用)2018高考数学一轮复习 第7章 立体几何初步 第4节 直线、平面平行的判定及其性质课时分层训练 文 新人教A版.doc_第1页
(全国通用)2018高考数学一轮复习 第7章 立体几何初步 第4节 直线、平面平行的判定及其性质课时分层训练 文 新人教A版.doc_第2页
(全国通用)2018高考数学一轮复习 第7章 立体几何初步 第4节 直线、平面平行的判定及其性质课时分层训练 文 新人教A版.doc_第3页
(全国通用)2018高考数学一轮复习 第7章 立体几何初步 第4节 直线、平面平行的判定及其性质课时分层训练 文 新人教A版.doc_第4页
(全国通用)2018高考数学一轮复习 第7章 立体几何初步 第4节 直线、平面平行的判定及其性质课时分层训练 文 新人教A版.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时分层训练(四十一)直线、平面平行的判定及其性质a组基础达标(建议用时:30分钟)一、选择题1设m,n是不同的直线,是不同的平面,且m,n,则“”是“m且n”的() 【导学号:31222255】a充分不必要条件b必要不充分条件c充要条件d既不充分也不必要条件a若m,n,则m且n;反之若m,n,m,且n,则与相交或平行,即“”是“m且n”的充分不必要条件2下列四个正方体图形中,a,b为正方体的两个顶点,m,n,p分别为其所在棱的中点,能得出ab平面mnp的图形的序号是()图745abcdc对于图形,平面mnp与ab所在的对角面平行,即可得到ab平面mnp;对于图形,abpn,即可得到ab平面mnp;图形无论用定义还是判定定理都无法证明线面平行3(2017山东济南模拟)如图746所示的三棱柱abca1b1c1中,过a1b1的平面与平面abc交于de,则de与ab的位置关系是()图746a异面b平行c相交d以上均有可能b在三棱柱abca1b1c1中,aba1b1.ab平面abc,a1b1平面abc,a1b1平面abc.过a1b1的平面与平面abc交于de,dea1b1,deab.4已知m,n表示两条不同直线,表示平面,下列说法正确的是()a若m,n,则mnb若m,n,则mnc若m,mn,则nd若m,mn,则nb若m,n,则m,n平行、相交或异面,a错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,b正确;若m,mn,则n或n,c错;若m,mn,则n与可能相交,可能平行,也可能n,d错5给出下列关于互不相同的直线l,m,n和平面,的三个命题:若l与m为异面直线,l,m,则;若,l,m,则lm;若l,m,n,l,则mn.其中真命题的个数为() 【导学号:31222256】a3b2c1d0c中,当与不平行时,也可能存在符合题意的l,m;中,l与m也可能异面;中,ln,同理,lm,则mn,正确二、填空题6设,为三个不同的平面,a,b为直线,给出下列条件:a,b,a,b;,;,;a,b,ab.其中能推出的条件是_(填上所有正确的序号). 【导学号:31222257】在条件或条件中,或与相交由,条件满足在中,a,abb,从而,满足7如图747所示,正方体abcda1b1c1d1中,ab2,点e为ad的中点,点f在cd上若ef平面ab1c,则线段ef的长度等于_图747在正方体abcda1b1c1d1中,ab2,ac2.又e为ad中点,ef平面ab1c,ef平面adc,平面adc平面ab1cac,efac,f为dc中点,efac.8(2016衡水模拟)如图748,在四面体abcd中,m,n分别是acd,bcd的重心,则四面体的四个面中与mn平行的是_图748平面abc,平面abd连接am并延长交cd于e,则e为cd的中点由于n为bcd的重心,所以b,n,e三点共线,且,所以mnab.于是mn平面abd且mn平面abc.三、解答题9一个正方体的平面展开图及该正方体的直观图的示意图如图749所示(1)请将字母f,g,h标记在正方体相应的顶点处(不需说明理由);(2)判断平面beg与平面ach的位置关系,并证明你的结论图749解(1)点f,g,h的位置如图所示.5分(2)平面beg平面ach,证明如下:因为abcdefgh为正方体,所以bcfg,bcfg.7分又fgeh,fgeh,所以bceh,bceh,于是四边形bche为平行四边形,所以bech.9分又ch平面ach,be平面ach,所以be平面ach.同理bg平面ach.又bebgb,所以平面beg平面ach.12分10(2017西安质检)如图7410,在直三棱柱abca1b1c1中,已知acbc,bccc1,设ab1的中点为d,b1cbc1e.图7410求证:(1)de平面aa1c1c;(2)bc1ab1.证明(1)由题意知,e为b1c的中点,又d为ab1的中点,因此deac.2分又因为de平面aa1c1c,ac平面aa1c1c,所以de平面aa1c1c.5分(2)因为棱柱abca1b1c1是直三棱柱,所以cc1平面abc.因为ac平面abc,所以accc1.7分因为acbc,cc1平面bcc1b1,bc平面bcc1b1,bccc1c,所以ac平面bcc1b1.又因为bc1平面bcc1b1,所以bc1ac.10分因为bccc1,所以矩形bcc1b1是正方形,因此bc1b1c.因为ac,b1c平面b1ac,acb1cc,所以bc1平面b1ac.又因为ab1平面b1ac,所以bc1ab1.12分b组能力提升(建议用时:15分钟)1.在四面体abcd中,截面pqmn是正方形,则在下列结论中,错误的是() 【导学号:31222258】aacbdbac截面pqmncacbdd异面直线pm与bd所成的角为45c因为截面pqmn是正方形,所以mnpq,则mn平面abc,由线面平行的性质知mnac,则ac截面pqmn,同理可得mqbd,又mnqm,则acbd,故a,b正确又因为bdmq,所以异面直线pm与bd所成的角等于pm与qm所成的角,即为45,故d正确2如图7412所示,棱柱abca1b1c1的侧面bcc1b1是菱形,设d是a1c1上的点且a1b平面b1cd,则a1ddc1的值为_图74121设bc1b1co,连接od.a1b平面b1cd且平面a1bc1平面b1cdod,a1bod.四边形bcc1b1是菱形,o为bc1的中点,d为a1c1的中点,则a1ddc11.3如图7413所示,在三棱锥pabc中,平面pac平面abc,paac,abbc,设d,e分别为pa,ac的中点图7413(1)求证:de平面pbc.(2)在线段ab上是否存在点f,使得过三点d,e,f的平面内的任一条直线都与平面pbc平行?若存在,指出点f的位置并证明;若不存在,请说明理由解(1)证明:点e是ac中点,点d是pa的中点,depc.2分又de平面pbc,pc平面pbc,de平面pbc.5分(2)当点f是线段ab中点时,过点d,e,f的平面内的任一条直线都与平面pbc平行.7分证明如下:取ab的中点f,连接ef,df.由(1)可知de平面pbc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论