




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3 2球的表面积与体积公式的推导 了解 9 11球的体积和表面积 高等于底面半径的旋转体体积对比 一 球的体积公式的推导 学习球的知识要注意和圆的有关知识结合起来 所以我们先来回忆圆面积计算公式的导出方法 我们把一个半径为R的圆分成若干等分 然后如上图重新拼接起来 把一个圆近似的看成是长是 R 宽是R的矩形 一 球的体积公式的推导 那么圆的面积就近似等于 R2 当所分份数不断增加时 精确程度就越来越高 当份数无穷大时 就得到了圆的面积公式 当所分份数不断增加时 精确程度就越来越高 当份数无穷大时 就得到了圆的面积公式 求值的步骤是 即先把半球分割成n部分 再求出每一部分的近似体积 并将这些近似值相加 得出半球的近似体积 最后考虑n变为无穷大的情形 由半球的近似体积推出准确体积 分割 求近似和 化为准确和 一 球的体积公式的推导 已知球的半径为R 求球的体积 一 球的体积公式的推导 解 如图 将此球的上半球自下而上n等分 则各截面圆的半径为 已知球的半径为R 求球的体积 一 球的体积公式的推导 解 如图 将此球的上半球自下而上n等分 则各截面圆的半径为 各部分可近似的看做一个圆柱 各部分的面积为 已知球的半径为R 求球的体积 一 球的体积公式的推导 解 如图 将此球的上半球自下而上n等分 各部分可近似的看做一个圆柱 各部分的面积为 已知球的半径为R 求球的体积 一 球的体积公式的推导 解 如图 将此球的上半球自下而上n等分 这种解题的思想 称为极限思想 R R 一个半径和高都等于R的圆柱 挖去一个以上底面为底面 下底面圆心为顶点的圆锥后 所得的几何体的体积与一个半径为R的半球的体积相等 结论 2 若每小块表面看作一个平面 将每小块平面作为底面 球心作为顶点便得到n个棱锥 这些棱锥体积之和近似为球的体积 当n越大 越接近于球的体积 当n趋近于无穷大时就精确到等于球的体积 1 球的表面是曲面 不是平面 但如果将表面平均分割成n个小块 每小块表面可近似看作一个平面 这n小块平面面积之和可近似看作球的表面积 当n趋近于无穷大时 这n小块平面面积之和等于球的表面积 球面不能展开成平面图形 所以求球的表面积无法用展开图求出 如何求球的表面积公式呢 回忆球的体积公式的推导方法 是否也可借助于这种极限思想方法来推导球的表面积公式呢 下面 我们再次运用这种方法来推导球的表面积公式 思路如下 二 球的表面积公式的推导 二 球的表面积公式的推导 第一步 分割 球面被分割成n个网格 表面积分别为 则球的表面积 则球的体积为 二 球的表面积公式的推导 第二步
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急安全培训证课件
- 应急安全培训活动课件
- 应急安全培训企业培训课件
- 2024职称计算机考前冲刺试卷附参考答案详解【培优A卷】
- 秋季腹泻患儿辅食调整方案与喂养指导
- 非开挖施工合同(标准版)
- 建筑商合同(标准版)
- 租用香菇大棚合同(标准版)
- 2025年教育信息化2.0背景下教师信息技术与课程资源整合能力培养策略研究报告
- 2025年智慧校园安全管理报告:校园安全风险防控策略研究
- 人才服务合同书
- 2025-2026学年统编版八年级上册道德与法治教学计划含教学进度表
- 2025年工会入职考试试题及答案
- 2025年中国电力投资集团校园招聘笔试题型分析及备考策略
- 旅游服务安全知识培训课件
- 公司章程制定合同协议书范本模板
- 2024人教PEP版三年级英语上册全册教案
- 中国慢性胃炎诊治指南(2022年)解读
- 立体车库应急预案范文
- 体彩专管员专业知识培训课件
- 严重腹部创伤院内救治专家共识(2024)解读
评论
0/150
提交评论