已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 薄板弯曲问题的有限元法 有限元法的原理及应用 学院 机械工程学院班级 锻压1班小组成员 周均博张杨曹琛孔晓华祖晓阳 2 薄膜 厚度 薄板 厚板b 板长宽最小值 一 定义及假设 1 定义 工程力学理论研究中 概念定义的板是指厚度尺寸相对长宽尺寸小很多的平板 且能承受横向或垂直于板面的载荷 如板不是平板而为曲的 指一个单元 则称为壳问题 如作用于板上的载荷仅为平行于板面的纵向载荷 则称为平面应力问题 如作用于板上的载荷为垂直于板面的横向载荷 则称为板的弯扭问题 常简称板的弯曲问题 3 2 基本假设 克希霍夫假设 1 直线假设 即变形前垂直于板中面的直线 在弯曲变形后仍为直线 且垂直于弯曲后的中面 说明在平行于中面的面上没有剪应变 即 4 2 厚度不变假设 即忽略板厚变化 即 由于板内各点的挠度与z坐标无关 只是x y的函数 即 3 中面上正应力远小于其它应力分量假设 平行于中面的各层相互不挤压 不拉伸 沿z向的正应力可忽略 即 4 中面无伸缩假设 弯曲过程中 中面无伸缩 薄板中面内的各点都没有平行中面的位移 即 纵向荷载 可以认为他们沿薄板厚度均匀分布 因而他们所引起的应力 形变和位移可以按平面应力问题进行计算 横向荷载 将使薄板弯曲 他们所引起的应力 形变和位移 可以按薄板弯曲问题进行计算 5 二 基本方程1 几何方程 积分可得 绕x轴转角 绕y轴转角 6 2 物理方程 广义胡克定律 写为矩阵形式 7 3 内力矩公式及平衡方程单位宽度上垂直x y轴的横截面上弯矩 扭矩 8 图中力矩双箭头方向表示是力矩的法线方向 列平衡方程 由应力的正负方向的规定得出 正的应力合成的主矢量为正 正的应力乘以正的矩臂合成的主矩为正 反之为负 9 应力分量表达式 10 三 矩形薄板单元分析用有限元法求解薄板弯曲问题 常在板中面进行离散 常用的单元有三角形和矩形 为了使相邻单元间同时可传递力和力矩 节点当作刚性节点 即节点处同时有节点力和节点力矩作用 每个节点有三个自由度 即一个扰度和分别绕x y轴的转角 1 设位移函数 节点位移分量和节点力分量 11 薄板弯曲时 只有w x y 是薄板变形的未知基本函数 而其它量 如u v等都是w x y 的函数 故薄板矩形单元的位移函数的选择实际就是w x y 的选取 注意单元有12个自由度 则 另两个转角为 12 待定系数 利用12个节点位移值可待定12个系数 整理w x y 为插值函数形式 其中 形函数 13 2 单元收敛性分析 1 位移函数中包含有常量项 反映了刚体位移 如为扰度常量 为转角常量 2 位移函数中包含了常量应变项 如形变分量为 表明薄板处于均匀弯扭变形状态 即常应变状态 这里的常应变为扰度的二次函数 而在平面单元中为位移的一次式 这是因为板有厚度 其形变是指不同厚度上的 14 3 相邻单元在公共边界上扰度是连续的但转角不一定连续 设边界ij边y b则有位移四个系数刚好通过i j两个端点的扰度值和绕y轴的两个转角值唯一确定 同时 相邻单元在此边界上也能通过i j的值唯一确定 故连续 如对于绕x轴的转角 四个系数不能通过i j的两个已知转角值唯一待定 同理 相邻单元在此边界上也不能唯一确定四个系数 故转角不连续 所以 薄板矩形单元是非协调单元 但实践表明 当单元细分 其解完全能收敛真实解 15 3 单元刚度矩阵1 应变矩阵 其中 B 为x y的函数 与z无关 16 2 单元刚阵 17 4 总刚矩阵集成按平面问题的有限元法介绍的方法可集成得到结构的总刚矩5 载荷移置 6 边界条件出来7 求解线性方程组 18 四 三角形薄板单元1 面积坐标 三角形单元的面积坐标定义 如图示三角形单元中 任意一点P的位置可以用下面3个比例确定 其中A为 ijm的面积 Ai Aj Am分别为 Pjm Pim Pij的面积 比值Li Lj Lm就称为P点的面积坐标 19 实际为三角形的高与高的比 即平行jm线的直线上的所有点有相同的 同时 易得 即 三角形内与任一条边平行的直线上的所有点有相同的面积坐标 比较面积坐标与平面三角形单元形函数可知 面积坐标正是平面三节点三角形单元的三个形函数 面积坐标与整体坐标之间的变换 20 2 位移函数三角形单元能较好地适应斜边界 实际中广泛应用 单元的节点位移仍然为节点处的挠度wi和绕x y轴的转角 xi yi 独立变量为wi 三角形单元位移模式应包含9个参数 若考虑完全三次多项式 则有10个参数 若以此为基础构造位移函数 则必须去掉一项 则无法保证对称 经过多种选择 采用面积坐标比较合理可行 对于三角形单元 面积坐标的一 二 三次齐次分别有以下项 21 将三个节点的位移和面积坐标代入上式 可得 1 wi 2 wj 3 wm 代入上式对Li Lj求导 注意Lm 1 Li Lj 可得 将节点的面积坐标代入上述两式 可得6个关于 4 9的方程 求解后可得 4 9 22 23 最后 待定常数 1 9代入位移模式 整理后得 将w Lii
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合建民房出租合同范本
- 合伙开修车店合同范本
- 司机工人安全合同范本
- 公司股权并购合同范本
- 代理出口协议合同模板
- 危运车辆司机合同范本
- 危运车辆销售合同范本
- 合同更换产品补充协议
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道及完整答案(名师系列)
- 口腔员工劳动合同范本
- 人教版英语2024七年级上册全册单元知识清单(背诵版)
- 第4课 化解冲突有办法 (教学设计)-苏教版心理健康四年级上册
- SBT 11215-2018 商品交易市场建设与经营管理术语
- 2024春苏教版《亮点给力大试卷》 数学四年级下册(全册有答案)
- GB/T 35594-2023医药包装用纸和纸板
- 2021变电站端子箱
- 2023国家开放大学:《python程序设计》实验一-Python基础基础环境熟悉
- 村卫生室药品管理制度
- 职业健康安全管理手册+程序文件(ISO45001-2018)
- 降低阴式分娩产后出血发生率-PDCA
- 耳尖放血课件完整版
评论
0/150
提交评论