解析的概念与C-R方程.ppt_第1页
解析的概念与C-R方程.ppt_第2页
解析的概念与C-R方程.ppt_第3页
解析的概念与C-R方程.ppt_第4页
解析的概念与C-R方程.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复变函数论多媒体教学课件 DepartmentofMathematics 第二章解析函数 第一节解析函数的概念与柯西 黎曼方程 第二节初等解析函数 第三节初等多值函数 DepartmentofMathematics 第一节 解析函数的概念与柯西 黎曼方程 一 复变函数的导数与微分 1 定义2 1 在定义中应注意 2 微分 注1 可导与可微等价 注2 可导必连接 但连续不一定可导 例1 解 二 解析函数的概念及其简单性质 1 定义2 2 注1 注2 区域D内的解析函数也称为D内的全纯函数或正则函数 根据定义可知 函数在区域内解析与在区域内可导是等价的 2 奇点的定义 但是 函数在一点处解析与在一点处可导是不等价的概念 即函数在一点处可导 不一定在该点处解析 函数在一点处解析比在该点处可导的要求要高得多 定义2 3 3 求导法则 反函数求导法则 复合函数求导法则 二 Cauchy Riemann方程 1 可微的必要条件 证明 则 存在 存在 存在 注 定理条件是必要而非充分的 证 例2 2 可微的充要条件 证 1 必要性 2 充分性 证毕 3 可微的充分条件 4 解析的充要条件 5 解析的充分条件 注 柯西 黎曼方程是复变函数在一点可微的主要条件 例3 解 例4 解 四个偏导数均连续 指数函数 例5 证明 例6 解 以上四个偏导数均连续 即 例7 证 参照以上例题可进一步证明 例8 证 根据隐函数求导法则 根据柯西 黎曼方程得 作业 P90习题 一 5 2 6 2 7 8 1 2 本节结束 谢谢 思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论