



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年 级: 八年级 科 目:数学 授课教师:陈淑贤课题12.2.2 三角形全等的条件SAS课型新授学习内容简析本节在知识结构上,是同学们在学习了三角形有关要素、全等图形的概念及第一种识别方法“SSS”的基础上,进一步了解三角形全等的判定方法,为后续的学习内容奠定了基础。学情简析这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。教学目标知识目标:理解三角形全等的“边角边”的条件掌握三角形全等的“SAS”条件,了解三角形的稳定性能运用“SAS”证明简单的三角形全等问题能力目标:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程掌握三角形全等的“边角边”条件在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明情感、态度、价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神教学重点、难点:重点:三角形全等的条件难点:寻求三角形全等的条件教学策略、方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前预习:教 学 过 程教学环节教学内容教师活动学生活动批注新课感知师在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等给出三个条件时,有四种可能,能说出是哪四种吗? 生三内角、三条边、两边一内角、两内角一边 师很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等今天我们接着研究第三种情况:“两边一内角” (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况? 生两种1两边及其夹角 2两边及一边的对角 师按照上节方法,我们有两个问题需要探究师引导生思考、回答自主学习探究1:先画一个任意ABC,再画出一个A/B/C/,使AB= A/B/、AC=A/C/、A=A/(即保证两边和它们的夹角对应相等)把画好的三角形A/B/C/剪下,放到ABC上,它们全等吗? 探究2:先画一个任意ABC,再画出A/B/C/,使AB= A/B/、AC= A/C/、B=B/(即保证两边和其中一边的对角对应相等)把画好的A/B/C/剪下,放到ABC上,它们全等吗? 教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程1学生自己动手,利用直尺、三角尺、量角器等工具画出ABC与A/B/C/,将A/B/C/剪下,与ABC重叠,比较结果2作好图后,与同伴交流作图心得,讨论发现什么样的规律探究释疑操作结果展示: 对于探究1:画一个A/B/C/,使A/B/=AB,A/C/=AC,A/=A 1画DA/E=A; 2在射线A/D上截取A/B/=AB在射线A/E上截取A/C/=AC;3连结B/C/ 将A/B/C/剪下,发现ABC与A/B/C/全等这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”) 小结 : 两边和它们的夹角对应角相等的两个三角形全等简称“边角边”和“SAS”如图,在ABC和DEF中, 对于探究2: 学生画出的图形各式各样,有的说全等,有的说不全等教师在此可引导学生总结画图方法: 1画DB/E=B; 2在射线B/D上截取B/A/=BA; 3以A/为圆心,以AC长为半径画弧,此时只要C90,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和ABC全等的 也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等所以它不能作为判定两三角形全等的条件 归纳总结: “两边及一内角”中的两种情况只有一种情况能判定三角形全等即: 两边及其夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”)师总结动手画图,探究结论巩固拓展例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA连结BC并延长到E,使CE=CB连结DE,那么量出DE的长就是A、B的距离为什么? 师生共析如果能证明ABCDEC,就可以得出AB=DE练习:1填空:(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?)2、已知: ADBC,AD CB(图3)求证:ADCCBA3、已知:ABAC、ADAE、12(图4)求证:ABDACE出示例题,引导分析完成例题及练习,可讨论总结提高1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件2找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理师生共同总结板书设计122.2 三角形全等判定(2)一、复习导入二、尝试活动 探索新知三、应用新知 解决问题四、总结提高课后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版商铺租赁合同转让及租期延长补充协议
- 2025滨湖菊园园林园艺产品销售与养护服务全面合同
- 2025房地产项目智能家居系统升级精装修工程合同(项目编号:SG20250003)
- 2025冻猪白条冷链仓储配送与电商平台合作合同
- 2025橱柜家具销售合同范本专业定制家居解决方案
- 2025年集装箱租赁及运输代理合同范本
- 2025年文化旅游项目成本预算及控制建议合同范本
- 2025定向智能交通系统合作协议书范本:智慧城市建设
- 2025版唐代离婚协议书:针对唐代家庭财产继承的离婚协议
- 2025房地产总经理任命书及年度工作计划与考核协议
- 2025年秋新人教版数学一年级上册全册课件
- 电影鉴赏《头脑特工队》
- 《全新观光车操作与安全培训课件》
- 进出口贸易合规管理制度
- 介入手术交接流程
- 公共政策分析 课件 第0章 导论;第1章绪论:政策科学的“研究纲领”
- DB11-T 1140-2024 儿童福利机构常见疾病患儿养护规范
- 站立式起跑体育课件
- 2024-2030年撰写:中国病房行业发展趋势及竞争调研分析报告
- 《工贸企业重大事故隐患判定标准(机械行业)》知识培训
- 颈动脉狭窄手术治疗
评论
0/150
提交评论