




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于单片机的电子秤设计基于单片机的电子秤设计 学 院: 信息科学与工程学院 班 级: 姓 名: 学 号: 指导教师: 时 间: 目 录序言 第一章 任务和指标1.1 设计任务1.2设计指标1.3设计思路第二章 系统模块功能与选型2.1 控制器部分2.2 数据采集部分2.2.1 传感器的选择2.2.2 放大电路的选择2.2.3 A/D转换器的选择2.2.4 键盘的设计及选择2.3 显示电路部分的选择第三章 硬件电路的设计3.1 AT89C51的最小系统电路3.1.1 单片机芯片AT89C51简介3.1.2 单片机管脚说明3.1.3 AT89C51的最小系统电路构成3.2 电源电路设计3.3 数据采集部分电路设计3.3.1 传感器和其外围以及放大电路设计3.3.2 A/D转换芯片与AT89C51单片机接口电路设计3.3.3 测量算法3.4 显示电路与AT89C51单片机接口电路设计3.5 键盘电路与AT89C51单片机接口电路设计第四章 系统软件设计4.1程序设计框图4.2 C51程序第五章 设计总结 参考文献35序言称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。电子秤是电子衡器中的一种,衡器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,衡器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。称重装置不仅是提供重量数据的单体仪表,而且作为工业控制系统和商业管理系统的一个组成部分,推进了工业生产的自动化和管理的现代化,它起到了缩短作业时间、改善操作条件、降低能源和材料的消耗、提高产品质量以及加强企业管理、改善经营管理等多方面的作用。称重装置的应用已遍及到国民经济各领域,取得了显著的经济效益。因此,称重技术的研究和衡器工业的发展各国都非常重视。50年代中期电子技术的渗入推动了衡器制造业的发展。60年代初期出现机电结合式电子衡器以来,经过40多年的不断改进与完善,我国电子衡器从最初的机电结合型发展到现在的全电子型和数字智能型。现今电子衡器制造技术及应用得到了新发展。电子称重技术从静态称重向动态称重发展:计量方法从模拟测量向数字测量发展;测量特点从单参数测量向多参数测量发展,特别是对快速称重和动态称重的研究与应用。通过分析近年来电子衡器产品的发展情况及国内外市场的需求,电子衡器总的发展趋势是小型化、模块化、集成化、智能化;其技术性能趋向是速率高、准确度高、稳定性高、可靠性高;其功能趋向是称重计量的控制信息和非控制信息并重的“智能化”功能;其应用性能趋向于综合性和组合性。电子秤是电子衡器中的一种,衡器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,衡器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。第一章 任务和指标1.1 任务单片机电子计价秤: 设计重量检测、处理与显示电路,对5种以上不同单价的商品进行称量、计价和打印及键盘参数设置、数据上传等功能。 1.2 指标电子秤的计量性能涉及的主要技术指标有:量程、分度值、分度数、准确度等级等。(1)量程:电子衡器的最大称量Max,即电子秤在正常工作情况下,所能称量的最大值。(2)分度值:电子秤的测量范围被分成若干等份,每份值即为分度值。用e或d来表示。(3)分度数:衡器的测量范围被分成若干等份,总份数即为分度数用n表示。电子衡器的最大称量Max可以用总分度数n与分度值d的乘积来表示,即Max = n d1.3 设计思路目前,台式电子秤在商业贸易中的使用已相当普遍,但存在较大的局限性:体积大、成本高、需要工频交流电源供应、携带不便、应用场所受到制约。现有的便携秤为杆秤或以弹簧、拉伸变形来实现计量的弹簧秤,居民用户使用的基本是杆秤。弹簧盘秤制造工艺要求较高,弹簧的疲劳问题无法彻底解决,一旦超过弹簧弹性限度,弹簧秤就会产生很大误差,以至损坏,影响到称重的准确性和可靠性,只是一种暂时的代用品,也被列入逐渐取消的行列。 微控制器技术、传感器技术的发展和计算机技术的广泛应用,电子产品的更新速度达到了日新月异的地步。本系统在设计过程中,除了能实现系统的基本功能外,还增加了打印和通讯功能,可以实现和其他机器或设备(包括上位PC机和数据存储设备)交换数据.除此之外,系统的微控制器部分选择了兼容性比较好的AT89系列单片机,在系统更新换代的时候,只需要增加很少的硬件电路,甚至仅仅删改系统控制程序就能够实现。综上所述,本课题的主要设计思路是:利用压力传感器采集因压力变化产生的电压信号,经过电压放大电路放大,然后再经过模数转换器转换为数字信号,最后把数字信号送入单片机。单片机经过相应的处理后,得出当前所称物品的重量及总额,然后再显示出来。此外,还可通过键盘设定所称物品的价格。主要技术指标为:称量范围05kg;分度值0.01kg;精度等级级;电源DC1.5V(一节5号电池供电)。这种高精度智能电子秤体积小、计量准确、携带方便,集质量称量功能与价格计算功能于一体,能够满足商业贸易和居民家庭的使用需求。 第二章 系统模块功能与选型按照本设计功能的要求,系统由5个部分组成:控制器部分、测量部分、数据显示部分、键盘部分、和电路电源部分,系统设计总体方案框图如图2.1所示。放大电路A/D转换器放大电路压力传感器键盘LCD显示AT89C51单片机图2-1设计思路框图测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送A/D转换器,将模拟量转化为数字量输出。控制器部分接受来自A/D转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并将其存储到存储单元中。控制器还可以通过对扩展I/O的控制,对键盘进行扫描,而后通过键盘散转程序,对整个系统进行控制。数据显示部分根据需要实现显示功能。2.1 控制器部分本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。这种新型的智能仪表在测量过程自动化、测量结果的数据处理以及功能的多样化方面,都取得了巨大的进展。再则由于系统没有其它高标准的要求,又考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化,在这里选用AT89C51.2.2 数据采集部分电子秤的数据采集部分主要包括称重传感器、处理电路和A/D转换电路,因此对于这部分的论证主要分三方面2.2.1 传感器的选择 在设计中,传感器是一个十分重要的元件,因此对传感器的选择也显的特别的重要,不仅要注意其量程和参数,还有考虑到与其相配置的各种电路的设计的难以程度和设计性价比等等.传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载等因素综合评价来确定。一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。其公式如下:CK0K1K2K3(WmaxW)/N (2.1)C单个传感器的额定量程;W秤体自重;Wmax被称物体净重的最大值;N秤体所采用支撑点的数量;K0保险系数,一般取值在1.21.3之间;K1冲击系数;K2秤体的重心偏移系数;K3风压系数。本设计要求称重范围05kg,重量误差不大于0.01kg,根据传感器量程计算公式(2.1)可知: C1.2511.031(201.9)1 (2-1)9.01205为保证电子秤称量结果的准确度,克服传感器在低量程段线性度差的缺点。传感器的量程应根据皮带秤的最大流量来选择。在实际工作中,要求称重传感器的有效量程在20%80%之间,线性好,精度高。重量误差应控制在0.01Kg,又考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,根据式2.1的计算结果,所以我们确定传感器的额定载荷为7.5Kg,允许过载为150%F.S,精度为0.05%,最大量程时误差0.01kg,可以满足本系统的精度要求.综合考虑,本设计采用SP20C-G501电阻应变式传感器,其最大量程为7.5 Kg.称重传感器由组合式S型梁结构及金属箔式应变计构成,具有过载保护装置。由于惠斯登电桥具诸如抑制温度变化的影响,抑制干扰,补偿方便等优点,所以该传感器测量精度高、温度特性好、工作稳定等优点,广泛用于各种结构的动、静态测量及各种电子秤的一次仪表。该称重传感器主要由弹性体、电阻应变片电缆线等组成,其工作原理如图2.1所示: 图2.1称重传感器原理图表一 压力传感器主要技术指标 其测量原理:用应变片测量时,将其粘贴在弹性体上。当弹性体受力变形时,应变片的敏感栅也随同变形,其电阻值发生相应变化,通过转换电路转换为电压或电流的变化。由于内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出: (2-2)2.2.2放大电路选择称重传感器输出电压振幅范围020mV。而A/D转换的输入电压要求为02V,因此放大环节要有100倍左右的增益。对放大环节的要求是增益可调的(70150倍),根据本设计的实际情况增益设为100倍即可,零点和增益的温度漂移和时间漂移极小。按照输入电压20mV,分辨率20000码的情况,漂移要小于1V。由于其具有极低的失调电压的温漂和时漂(1V),从而保证了放大环节对零点漂移的要求。残余的一点漂移依靠软件的自动零点跟踪来彻底解决。稳定的增益量可以保证其负反馈回路的稳定性,并且最好选用高阻值的电阻和多圈电位器。由2.2.1中称重传感器的称量原理可知,电阻应变片组成的传感器是把机械应变转换成R/R,而应变电阻的变化一般都很微小,例如传感器的应变片电阻值120,灵敏系数 K=2,弹性体在额定载荷作用下产生的应变为1000,应变电阻相对变化量为:R/R = K= 21000106 =0.002 (2-3)由式2-3可以看出电阻变化只有0.24,其电阻变化率只有0.2%。这样小的电阻变化既难以直接精确测量,又不便直接处理。因此,必须采用转换电路,把应变计的R/R变化转换成电压或电流变化,但是这个电压或电流信号很小,需要增加增益放大电路来把这个电压或电流信号转换成可以被A/D转换芯片接收的信号。在前级处理电路部分,我们考虑可以采用以下几种方案:方案一、利用普通低温漂运算放大器构成前级处理电路;普通低温漂运算放大器构成多级放大器会引入大量噪声。由于A/D转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。所以,此种方案不宜采用。方案二、主要由高精度低漂移运算放大器构成差动放大器,而构成的前级处理电路;差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。其设计电路如图2-2所示:方案(三):采用专用仪表放大器,如:INA126,INA121等构成前级处理电路。下面举例用INA128仪用仪表放大器来实现。图2.2利用普通运放设计的差动放大器一般说来,集成化仪用放大器具有很高的共模抑制比和输入阻抗,因而在传统的电路设计中都是把集成化仪器放大器作为前置放大器。然而,绝大多数的集成化仪器放大器,特别是集成化仪器放大器,它们的共模抑制比与增益相关:增益越高,共模抑制比越大。而集成化仪器放大器作为心电前置放大器时,由于极化电压的存在,前置放大器的增益只能在几十倍以内,这就使得集成化仪器放大器作为前置放大器时的共模抑制比不可能很高。有学者试图在前置放大器的输入端加上隔直电容(高通网络)来避免极化电压使高增益的前置放大器进入饱和状态,但由于信号源的内阻高,且两输入端不平衡,隔直电容(高通网络)使等共模干扰转变为差模干扰,结果适得其反,严重地损害了放大器的性能。 为了实现信号的放大,设计电路如下:2.2.3 A/D转换器的选择A/D转换部分是整个设计的关键,这一部分处理不好,会使得整个设计毫无意义。目前,世界上有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的-型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。目前, ADC集成电路主要有以下几种类型:(1)并行比较A/D转换器:如ADC0808、 ADC0809等 。并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为“闪烁式”ADC。它由电阻分压器、比较器、缓冲器及编码器四种分组成。这种结构的ADC所有位的转换同时完成,其转换时间主取决于比较器的开关速度、编码器的传输时间延迟等。缺点是:并行比较式A/D转换的抗干扰能力差,由于工艺限制,其分辨率一般不高于8位,因此并行比较式A/D只适合于数字示波器等转换速度较快的仪器中,不适合本系统。(2) 逐次逼近型A/D转换器:如:ADS7805、ADS7804等。逐次逼近型ADC是应用非常广泛的模/数转换方法,这一类型ADC的优点:高速,采样速率可达 1MSPS;与其它ADC相比,功耗相当低;在分辨率低于12位时,价格较低。缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。(3)积分型A/D转换器:如:ICL7135、ICL7109、ICL1549、MC14433等。积分型ADC又称为双斜率或多斜率ADC,是应用比较广泛的一类转换器。它的基本原理是通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。若把积分器定时积分的时间取为工频信号的整数倍,可把由工频噪声引起的误差减小到最小,从而有效地抑制电网的工频干扰。这类ADC主要应用于低速、精密测量等领域,如数字电压表。其优点是:分辨率高,可达22位;功耗低、成本低。缺点是:转换速率低,转换速率在12位时为100300SPS。 (4 )压频变换型ADC:其优点是:精度高、价格较低、功耗较低。缺点是:类似于积分型ADC,其转换速率受到限制,12位时为100300SPS。 考虑到就个人学识而言,最熟悉的是并行比较A/D转换器ADC0809,所以在本次设计中采用ADC0809。ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。是目前国内应用最广泛的8位通用A/D芯片。图2.3 采用ADC0809设计的放大电路2.2.4 键盘处理部分方案论证由于电子秤需要设置单价(十个数字键,加上小数点),还具有确认、复位等功能,总共需设置13个键(包括一个复位键)。键盘的扩展有使用以下方案:采用矩阵式键盘:矩阵式键盘的特点是把检测线分成两组,一组为行线,一组列线,按键放在行线和列线的交叉点上。图2.6给出了一个44的矩阵键盘结构的键盘接口电路,图中的每一个按键都通过不同的行线和列线与主机相连这。44矩阵式键盘共可以安装16个键,但只需要8条测试线。当键盘的数量大于8时,一般都采用矩阵式键盘。图2.4 矩阵式键盘结合本设计的实际要求,16个按键使用44矩阵式键盘,另外一个复位键使用独立式按键实现。2.3显示电路部分的选择数据显示是电子秤的一项重要功能,是人机交换的主要组成部分,它可以将测量电路测得的数据经过微处理器处理后直观的显示出来。数据显示部分可以有以下两种方案供选择。的组成有以下两种方案可供选择:一是 LED数码管显示,二是LCD液晶显示两种选择. LCD液晶显示器是一种极低功耗显示器,从电子表到计算器,从袖珍时仪表到便携式微型计算机以及一些文字处理机都广泛利用了液晶显示器。这里使用液晶显示器显示。 第三章 硬件电路设计单片机根据设计要求与设计思路,此电路由一块MCS-51、按键输入电路、时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电路、12位LCD显示器电路。LCD显示器段码驱动电路16个按键输入电路10位LCD显示器电路复位电路LCD显示器位码驱动电路时钟电路图3.1硬件电路设计框图在本系统中用于称量的主要器件是称重传感器(一次变换元件),称重传感器在受到压力或拉力时会产生电信号,受到不同压力或拉力是产生的电信号也随着变化,而且力与电信号的关系一般为线性关系。由于称重传感器一般的输出范围为020mV,对A/D转换或单片机的工作参数来说不能使A/D转换和单片机正常工作,所以需要对输出的信号进行放大。由于传感器输出的为模拟信号,所以需要对其进行A/D转换为数字信号以便单片机接收。单片机根据称重传感器输出的电信号和速度传感器输出的速度信号计算出物体的重量。在本系统中,硬件电路的构成主要有以下几部分: AT89C52的最小系统构成、电源电路、数据采集、人-机交换电路等。3.1 AT89C51的最小系统电路3.1.1单片机芯片AT89C51介绍AT89C51是一种带4K字节FLASH存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪速存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图所示。图3.2 AT89C51引脚图3.1.2.单片机管脚说明VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89S52的一些特殊功能口,如下表所示:表3.1 P3.0口引脚功能表P3口引脚第二功能P3.0RXD(串行口输入)P3.1TXD(串行口输出)P3.2INT0(外部中断0输入)P3.3INT1(外部中断1输入)P3.4T0(定时器0外部脉冲输入)P3.5T1(定时器1外部脉冲输入)P3.6WR(外部数据存储器写脉冲输出)P3.7RD(外部数据存储器读脉冲输出)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。3.1.3 AT89C51的最小系统电路构成AT89C51单片机的最小系统由时钟电路、复位电路、电源电路及单片机构成。单片机的时钟信号用来提供单片机片内各种操作的时间基准,复位操作则使单片机的片内电路初始化,使单片机从一种确定的初态开始运行。单片机的时钟信号通常用两种电路形式得到:内部振荡方式和外部振荡方式。在引脚XTAL1和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器,就构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。当5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC0000H,这表明程序从0000H地址单元开始执行。系统复位是任何微机系统执行的第一步,使整个控制芯片回到默认的硬件状态下。51单片机的复位是由RESET引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机即进入芯片内部复位状态,而且一直在此状态下等待,直到RESET引脚转为低电平后,才检查EA引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。3.2 电源电路设计根据设计需要,本系统中需要设计两种不同级别的电源,即传感器需要+12V的电源,而系统其他芯片使用的是5V电源。考虑本次设计的实际要求,使系统稳定工作,提高产品的性价比,电源电路的 设计决定采用如下方案:图3.3 电源电路图220V的交流电经过变压器后输出15V的电压,经整流滤波电路后, 通过LM7812和LM7905进行DC/DC变换得到12V和+5V、-5V供器和系统的其他芯片使用。在变压器的原边加入熔断保护装置和MFC网络,使得系统获得的电源更稳定,效果更好,且电路短路时,熔断装置会迅速切断电源,保护其他电路元件不被损坏,供电电路如图3.3所示。3.3 数据采集部分电路设计数据采集部分电路包括传感器输出信号放大电路、A/D转换器与单片机接口电路。3.3.1 传感器和其外围以及放大电路设计传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。用传感器首先要考虑传感器所处的实际工作环境,这点对正确使用传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。因此传感器外围电路的抗干扰能力是数据采集部分电路设计的关键环节。传感器检测电路的功能是把电阻应变片的电阻变化转变为电压输出,由于惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,又因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵消,所以在本设计中选用最终方案我们选择的是上海开沐自动化有限公司生产的NS-TH1系列称重传感器,额定载荷20Kg,该称重传感器均采用全桥式等臂电桥。由于传感器输出的电压信号很小,是mV级的电压信号,因此为了提高系统的抗干扰能力,在传感器外围电路的设计过程中,增加了由普通运放设计的差动放大器增益调节电阻Rg选用10K 电阻,是为了满足系统抗干扰的要求而设计。其电路图如3.2所示。 图3.2传感器和其外围电路图这是一个电阻应变片式称重传感器,将电阻应变片贴在金属的弹性体(即力敏感器)上,并连接成一差动全桥电路。电阻应变片实心轴沿轴向线应变为: (3-1)实心轴沿圆周向线应变为: (3-2)金属材料的电阻相对变化公式为: (3-3)把3-1、3-1代入3-3可以得到其输出电压为: (3-4)其中F为压力(即重物重量)A为受力面积E为弹性材料的弹性模量。如果在电阻的两侧都加入应变片,则其输出为 (3-5)SP20C-G501的输出电压为1-5V相应压力为1-50KPa。供电电流变动会直接影响传感器的输出电压,因此希望电流变动要小。此外,增大或减小驱动电流可调整输出电压,但电流过小,输出电压降低同时抗噪声能力减弱;电流过大,会使传感器发热等,将对传感器特性影响加大。因此在电路中使用1mA的驱动电流。即使用的电流为1mA左右。电路中,采用通用运算放大器LM324,由稳态二极管VS提供2.5V的输出电压经电阻R2和R3分压得到基准电压,作为运放A1输入电压,并供给1mA的电流。传感器的驱动电流流过基准电阻R4,其上的压降等于输入电压。R13和R14为失调电压的温度补偿电阻,阻值选择500k-1.5M。输入采用高输入阻抗的差动输入方式,再有差动放大器电路进行放大,输出1-5V的电压。RP2用于调整电路输入的灵敏度,RP1用于失调电压的调整,调整时,压力为0KPa时输出电压为1V,调整RP1,当压力为达到20Kg的力时,输出电压为5V即可。而有式(3-5)得三运放放大电路的输出信号与输入信号的关系式为: (3-6)通过上式可以看出,放大系数为 (3-7)代入数值可以计算出,其放大系数在70150之间,完全符合设计要求。有(3-6)可以得到电桥输入电压U0与被测重量x成正比,即 (3-8)式中:电桥的电源电压 传感器系数3.3.2 A/D转换芯片与AT89C51单片机接口电路设计ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。其引脚图如下:3.3.3 测量算法 A/D转换结果D与被测量x存在以下关系: (3-9)式中:S传感器及其测量电路的灵敏度(即被测量X转换成电压U的转换系数) K放大器的放大倍数 A/D转换器满量程输入电压 A/D转换器满量程输出数字而被测量X总是以其测量数字N和测量单位x1表示 (3-10)将式(3-10)代入(3-9)得 (3-11)由上式可见只要满足以下条件 (3-12)就可以使A/D转换结果D与被测量x的数值N相等,即D=N,在这种情况下将A/D转换结果作为被测量的数值传送到显示器显示出来。3.4显示电路与AT89C51单片机接口电路设计在2.3显示电路论证中,本设计采用是LCD显示。在LCD驱动时,需在段电极和公共电极上施加交流电压。若只在电极上施加DC电压时,液晶本身发生劣化。液晶驱动方式包括静态驱动、动态驱动等驱动方式。(1)静态驱动 所有的段都有独立的驱动电路,表示段电极与公共电极之间连续施加电压。它适合于简单控制的LCD。(2)多路驱动方式 构成矩阵电极,公共端数为n,按照1/n的时序分别依次驱动公共端,与该驱动时序相对应,对所有的段信号电极作选择驱动。这种方式适合于比较复杂控制的LCD。在多路驱动方式中,像素可分为选择点、半选择点和非选择点。为了提高显示的对比度和降低串扰,应合理选择占空比(duty)和偏压(bias)。施加在LCD上所表示的ON和OFF时的电压有效值与占空比和偏压的关系如下:Vo:LCD驱动电压 N:占空比(1/N) a:偏压(1/a)多路驱动方式可分为点反转驱动和帧反转驱动。点反转驱动适合于低占空比应用,它在各段数据输出时,将数据反转。帧反转驱动适合于高占空比应用,它在各帧输出时,将数据反转。对于多灰度和彩色显示的控制方法,通常采用帧频控制(FRC)和脉宽调制(PWM)方法。帧频控制是通过减少帧输出次数,控制输出信号的有效值,来实现多灰度和彩色控制。而脉宽调制是通过改变段输出信号脉宽,控制输出信号的有效值,来实现多灰度和彩色控制。如图3.7所示。 图3.73.5键盘电路与AT89S52单片机接口电路设计矩阵式键盘的结构与工作原理: 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式。在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。矩阵式键盘的按键识别方法 :确定矩阵式键盘上何键被按下介绍一种“行扫描法”。行扫描法 行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。判断键盘中有无键按下 将全部行线Y0-Y3置低电平,然后检测列线的状态。只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。若所有列线均为高电平,则键盘中无键按下。 判断闭合键所在的位置 在确认有键按下后,即可进入确定具体闭合键的过程。其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。 在本系统中键盘采用矩阵式键盘并采用中断工作方式。键盘为4 X 4键盘,包括0、1、2、3、4、5、6、7、8、9、十个数字及确认和清除键。采用中断工作方式提高了CPU的利用效率,没键按下时没有中断请求,有键按下时,向CPU提出中断请求,CPU响应后执行中断服务程序,在中断程序中才对键盘进行扫描。下图就是键盘电路接口电路图。 第四章 系统软件设计程序设计是一件复杂的工作,为了把复杂的工作条理化,就要有相应的步骤和方法。其步骤可概括为以下三点: 分析系统控制要求,确定算法:对复杂的问题进行具体的分析,找出合理的计算方法及适当的数据结构,从而确定编写程序的步骤。这是能否编制出高质量程序的关键。 根据算法画流程图:画程序框图可以把算法和解题步骤逐步具体化,以减少出错的可能性。编写程序:根据程序框图所表示的算法和步骤,选用适当的指令排列起来,构成一个有机的整体,即程序。程序数据的一种理想方法是结构化程序设计方法。结构化程序设计是对利用到的控制结构类程序做适当的限制,特别是限制转向语句(或指令)的使用,从而控制了程序的复杂性,力求程序的上、下文顺序与执行流程保持一致性,使程序易读易理解,减少逻辑错误和易于修改、调试。根据系统的控制任务,本系统的软件设计主要由主程序、初始化程序、显示子程序、数据采集子程序和延时程序等组成。4.程序设计图4 系统主程序流程图附AT89C51内所写程序:#include#include #include #define uint unsigned int#define uchar unsigned char#define C8255_A XBYTE0x0000/8255 端口地址定义#define C8255_B XBYTE0x0001#define C8255_C XBYTE0x0002#define C8255_CON XBYTE0x0003#define uchar unsigned char#define uint unsigned intsbit lcden=P35;sbit lcdrw=P34;sbit lcdrs=P33;unsigned char q=0;sbit st=P23;float AD_res;float AD_res1;unsigned char AD;char sunit4;int sresult3,intresult;double unit,result;uchar code a16=0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e;unsigned char c=0123456789. ;void Init_Serial(void)/晶振为11.0592MHz,波特率为19200bps SCON = 0x50;/ 串口工作方式1TMOD = (TMOD&0x0F)|0x20;/ 选择定时器1方式2PCON = 0x80;/ 波特率倍增TH1 = 0xFD;/ 计数初值, 19200bpsTR1 = 1;/ 启动定时器1ES = 0;void sdelay(void)unsigned int i;for(i=0; i0;x-) for(y=110;y0;y-); void write_com(uchar com) lcdrs=0; C8255_B=com; LDelay(5); lcden=1; LDelay(5); lcden=0; void write_data(uchar date) lcdrs=1; C8255_B=date; LDelay(5); lcden=1; LDelay(5); lcden=0; void init() lcden=0; lcdrw=0; write_com(0x38); write_com(0x0e); write_com(0x06); write_com(0x01); void delay(uint i) uint j; for(j=0;ji;j+); uchar checkkey() uchar i; C8255_A=0x00; i=C8255_C; i=i&0x0f; if(i=0x0f)return(0); else return(0xff); uchar keyscan() uchar scancode,codevalue,x,m=0,k,i,j;if(checkkey()=0)return(0xff); else delay(100); if(checkkey()=0)return(0xff); else scancode=0xf7;m=0x00; for(i=1;i=4;i+) k=0x08;C8255_A=scancode;x=C8255_C;for(j=0;j1; m=m+4;scancode=scancode;scancode=scancode1;scancode=scancode; /void chuang(unsigned char *string)/ while(stringq!=0)/ SBUF=stringq;/ while(TI!=1);/ TI=0;/q+;/ / q=0;/ void chuang(unsigned int x) SBUF=cx; while(TI!=1); TI=0; void extern0_interrupt() interrupt 0AD_res=P1;AD_res1=AD_res*5/255;st=0;st=1;st=0; void main() unsigned
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国植保无人机行业前景展望及投资策略研究研究报告
- 2025-2030中国桂圆市场消费趋势预测与未来供需格局研究研究报告
- 2025-2030中国朗姆酒行业发展分析及投资价值评估研究报告
- 2025-2030中国智慧园区行业市场深度调研及发展策略与投资前景研究报告
- 2025-2030中国无线电发射塔行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国新风量检测仪行业市场深度调研及前景趋势与投资研究报告
- 九年级语文课程内容整合计划
- 化学能源转换的多学科交叉研究-洞察阐释
- 多设备协同的键盘隐藏模型研究与实现-洞察阐释
- 品牌故事与情感营销-洞察阐释
- 智能教育技术驱动的个性化学习路径优化研究
- 基层治理现代化视角下“枫桥经验”的实践路径与创新研究
- 通信光缆租用协议合同书
- 2024-2025部编版小学道德与法治一年级下册期末考试卷及答案(三套)
- 医疗救助资金动态调整机制-洞察阐释
- 篮球培训报名合同协议
- 金属非金属矿山重大事故隐患判定标准-尾矿库
- 自考00061国家税收历年真题及答案
- 公共组织绩效评估-形考任务一(占10%)-国开(ZJ)-参考资料
- 冠状动脉介入诊断治疗
- 高效催化剂的开发与应用-全面剖析
评论
0/150
提交评论