你能证明他们吗(第2课时).doc_第1页
你能证明他们吗(第2课时).doc_第2页
你能证明他们吗(第2课时).doc_第3页
你能证明他们吗(第2课时).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课 题1.1、你能证明它们吗(二)课型新授课教学目标1、掌握证明的基本步骤和书写格式。2、经历“探索发现猜想证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例体会反证法的含义。4、会运用“等角对等边”解决实际应用问题及相关证明问题。教学重点经历“探索发现一一猜想证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论结合实例体会反证法的含义教学难点由一般结论归纳出特殊结论探求证明思路,特别是反证法的思路含义教学方法探究式教学法 自主探究与合作探究教 学 内 容 及 过 程教师活动学生活动一、提出问题,引入新课在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?二、自主探究1让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。2结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。已知:如图,在ABC中,AB=AC,BD、CE是ABC的角平分线求证:BD=CE证法1:AB=AC,ABC=ACB(等边对等角)1=ABC,2=ABC,1=2在BDC和CEB中,ACB=ABC,BC=CB,1=2BDCCEB(ASA)BD=CE(全等三角形的对应边相等) 证法2:证明:AB=AC,ABC=ACB又3=4在ABC和ACE中,3=4,AB=AC,A=AABDACE(ASA)BD=CE(全等三角形的对应边相等)EDCBA三、经典例题 变式练习 当ABD= ABC, ACE=ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究猜测证明的学习过程。5引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。四、逆向思考,导出反证法如图,已知:在ABC中,B=C,求证:AB=AC要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了我们用“反过来”思考问题,获得并证明了一个非常重要的定理等腰三角形的判定定理:有两个角相等的三角形是等腰三角形这一定理可以简单叙述为:等角对等边我们不仅发现了几何图形的对称美,也发现了数学语言的对称美五、逆向思考,导出反证法我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等你认为这个结论成立吗?如果成立,你能证明它吗?的确如此像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢?我们来看一位同学的想法:如图,在ABC中,已知BC,此时AB与Ac要么相等,要么不相等假设AB=AC,那么根据“等边对等角”定理可得C=B,但已知条件是BC“C=B”与已知条件“BC”相矛盾,因此ABAC你能理解他的推理过程吗?都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立这也是证明命题的一种方法,我们把它叫做反证法六、及时巩固 随堂练习已知:如图,CAE是ABC的外角,ADBC且1=2求证:AB=AC七、探讨收获 课时小结八、作业:1、基础作业:P9页习题1.2 1、2、3。2、拓展作业:目标检测3、预习作业:P10-12页 做一做板书设计:1.1、你能证明它们吗(二)探索发现猜想证明回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力。积极思考,回忆以前所学知识,联想新问题。认真观看例1图形中线段的关系,积极思考,认真听讲。通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等并对这些命题给予多样的证明。对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BDCE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把ABC分成两个全等的三角形积极动脑思考,认真听讲,获得对演绎证明的初步体会。引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。体会老师的讲解,并根据小结记忆掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论