计量经济学中级教程后答案.doc_第1页
计量经济学中级教程后答案.doc_第2页
计量经济学中级教程后答案.doc_第3页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文档系作者精心整理编辑,实用价值高。第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。为了使模型更现实,我们有必要在模型中引进扰动项u来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。1.3 时间序列数据时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。在一项应用中,依据估计量算出的一个具体的数值,称为估计值。如就是一个估计量,。现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为。第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)(4),OLS估计量就是BLUE。(4)错R2 =ESS/TSS。(5)错。我们可以说的是,手头的数据不允许我们拒绝原假设。(6)错。因为,只有当保持恒定时,上述说法才正确。2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X1外,其余解释变量的系数均不显著。(检验过程略)2.3 (1) 斜率系数含义如下:0.273: 年净收益的土地投入弹性, 即土地投入每上升1%, 资金投入不变的情况下, 引起年净收益上升0.273%.733: 年净收益的资金投入弹性, 即资金投入每上升1%, 土地投入不变的情况下, 引起年净收益上升0.733%. 拟合情况: ,表明模型拟合程度较高.(2) 原假设 备择假设 检验统计量 查表, 因为t=2.022,故拒绝原假设,即显著异于0,表明资金投入变动对年净收益变动有显著的影响.(3) 原假设 备择假设 : 原假设不成立 检验统计量 查表,在5%显著水平下 因为F=475.14,故拒绝原假设。结论,:土地投入和资金投入变动作为一个整体对年净收益变动有影响.2.4 检验两个时期是否有显著结构变化,可分别检验方程中D和DX的系数是否显著异于0.(1) 原假设 备择假设 检验统计量 查表 因为t=3.155, 故拒绝原假设, 即显著异于0。(2) 原假设 备择假设 检验统计量 查表 因为|t|=3.155, 故拒绝原假设, 即显著异于0。结论:两个时期有显著的结构性变化。2.5 (1) (2)变量、参数皆非线性,无法将模型转化为线性模型。(3)变量、参数皆非线性,但可转化为线性模型。取倒数得:把1移到左边,取对数为:,令2.6 (1)截距项为-58.9,在此没有什么意义。X1的系数表明在其它条件不变时,个人年消费量增加1百万美元,某国对进口的需求平均增加20万美元。X2的系数表明在其它条件不变时,进口商品与国内商品的比价增加1单位,某国对进口的需求平均减少10万美元。(2)Y的总变差中被回归方程解释的部分为96%,未被回归方程解释的部分为4%。(3)检验全部斜率系数均为0的原假设。 =由于F192 F0.05(2,16)=3.63,故拒绝原假设,回归方程很好地解释了应变量Y。A. 原假设H0:1= 0 备择假设H1:1 0 t0.025(16)=2.12,故拒绝原假设,1显著异于零,说明个人消费支出(X1)对进口需求有解释作用,这个变量应该留在模型中。B. 原假设H0:2=0备择假设H1:2 0 t0.025(16)=2.12,不能拒绝原假设,接受2=0,说明进口商品与国内商品的比价(X2)对进口需求地解释作用不强,这个变量是否应该留在模型中,需进一步研究。2.7(1)弹性为-1.34,它统计上异于0,因为在弹性系数真值为0的原假设下的t值为:得到这样一个t值的概率(P值)极低。可是,该弹性系数不显著异于-1,因为在弹性真值为-1的原假设下,t值为:这个t值在统计上是不显著的。(2)收入弹性虽然为正,但并非统计上异于0,因为t值小于1()。(3)由,可推出 本题中,0.27,n46,k2,代入上式,得0.3026。2.8(1)薪金和每个解释变量之间应是正相关的,因而各解释变量系数都应为正,估计结果确实如此。系数0.280的含义是,其它变量不变的情况下,CEO薪金关于销售额的弹性为0.28;系数0.0174的含义是,其它变量不变的情况下,如果股本收益率上升一个百分点(注意,不是1),CEO薪金的上升约为1.07;与此类似,其它变量不变的情况下,公司股票收益上升一个单位,CEO薪金上升0.024。(2)用回归结果中的各系数估计值分别除以相应的标准误差,得到4个系数的t值分别为:13.5、8、4.25和0.44。用经验法则容易看出,前三个系数是统计上高度显著的,而最后一个是不显著的。(3)R20.283,拟合不理想,即便是横截面数据,也不理想。2.9 (1)2.4。(2)因为Dt和(Dtt)的系数都是高度显著的,因而两时期人口的水平和增长率都不相同。19721977年间增长率为1.5,19781992年间增长率为2.6(1.51.1)。2.10 原假设H0: 1 =2,3 =1.0 备择假设H1: H0不成立 若H0成立,则正确的模型是: 据此进行有约束回归,得到残差平方和。 若H1为真,则正确的模型是原模型: 据此进行无约束回归(全回归),得到残差平方和S。 检验统计量是: F(g,n-K-1) 用自由度(2,n-3-1)查F分布表,5%显著性水平下,得到FC , 如果F FC, 则拒绝原假设H0,接受备择假设H1。2.11 (1)2个,(2)4个,2.12 2.13 对数据处理如下:lngdpln(gdp/p) lnk=ln(k/p) lnL=ln(L/P)对模型两边取对数,则有lnYlnAalnKblnLlnv用处理后的数据采用EViews回归,结果如下: t:(0.95) (16.46) (3.13) 由修正决定系数可知,方程的拟合程度很高;资本和劳动力的斜率系数均显著(tc=2.048), 资本投入增加1,gdp增加0.96%,劳动投入增加1,gdp增加0.18%,产出的资本弹性是产出的劳动弹性的5.33倍。第三章 经典假设条件不满足时的问题与对策3.1(1)对(2)对(3)错即使解释变量两两之间的相关系数都低,也不能排除存在多重共线性的可能性。(4)对(5)错。在扰动项自相关的情况下OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(6)对(7)错。模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。(8)错。在多重共线性的情况下,尽管全部“斜率”系数各自经t检验都不显著, R2值仍可能高。(9)错。存在异方差的情况下,OLS法通常会高估系数估计量的标准误差,但不总是。(10)错。异方差性是关于扰动项的方差,而不是关于解释变量的方差。3.2 对模型两边取对数,有lnYt=lnY0+t*ln(1+r)+lnut ,令LYlnYt,alnY0,bln(1+r),vlnut,模型线性化为:LYabtv估计出b之后,就可以求出样本期内的年均增长率r了。3.3(1)DW=0.81,查表(n=21,k=3,=5%)得dL=1.026。 DW=0.811.026 结论:存在正自相关。(2)DW=2.25,则DW=4 2.25 = 1.75 查表(n=15, k=2, =5%)得du =1.543。 1.543DW= 1.75 2 结论:无自相关。(3)DW= 1.56,查表(n=30, k=5, =5%)得dL =1.071, du =1.833。 1.071DW= 1.56 1.833结论:无法判断是否存在自相关。3.4横截面数据.不能采用OLS法进行估计,由于各个县经济实力差距大,可能存在异方差性。GLS法或WLS法。3.5 (1)可能存在多重共线性。因为X3的系数符号不符合实际.R2很高,但解释变量的t值低:t2=0.9415/0.8229=1.144, t3=0.0424/0.0807=0.525.解决方法:可考虑增加观测值或去掉解释变量X3.(2)DW=0.8252, 查表(n=16,k=1,=5%)得dL=1.106.DW=0.8252Fc1.97,故拒绝原假设原假设H0:。结论:存在异方差性。3.12 将模型变换为:若、为已知,则可直接估计(2)式。一般情况下,、为未知,因此需要先估计它们。首先用OLS法估计原模型(1)式,得到残差et,然后估计:其中为误差项。用得到的和的估计值和生成令,用OLS法估计即可得到和,从而得到原模型(1)的系数估计值和。3.13 (1)全国居民人均消费支出方程:= 90.93 + 0.692 R2=0.997t: (11.45) (74.82) DW=1.15DW=1.15,查表(n=19,k=1,=5%)得dL=1.18。 DW=1.151.18结论:存在正自相关。可对原模型进行如下变换:Ct -Ct-1 = (1-)+(Yt-Yt-1)+(ut -ut -1)由令:Ct= Ct 0.425Ct-1 , Yt= Yt-0.425Yt-1 ,=0.575 然后估计 Ct=+Yt + t ,结果如下:= 55.57 + 0.688 R2=0.994 t:(11.45) (74.82) DW=1.97DW=1.97,查表(n=19,k=1,=5%)得du=1.401。 DW=1.971.18,故模型已不存在自相关。(2)农村居民人均消费支出模型:农村:= 106.41 + 0.60 R2=0.979t: (8.82) (28.42) DW=0.76DW=0.76,查表(n=19,k=1,=5%)得dL=1.18。 DW=0.761.18,故存在自相关。解决方法与(1)同,略。(3)城镇:= 106.41 + 0.71 R2=0.998t: (13.74) (91.06) DW=2.02DW=2.02,非常接近2,无自相关。3.14 (1)用表中的数据回归,得到如下结果: =54.19 + 0.061X1 + 1.98*X2 + 0.03X3 - 0.06X4 R20.91t: (1.41) (1.58) (3.81) (1.14) (-1.78)根据tc(=0.05,n-k-1=26)=2.056,只有X2的系数显著。 (2)理论上看,有效灌溉面积、农作物总播种面积是农业总产值的重要正向影响因素。在一定范围内,随着有效灌溉面积、播种面积的增加,农业总产值会相应增加。受灾面积与农业总产值呈反向关系,也应有一定的影响。而从模型看,这些因素都没显著影响。这是为什么呢? 这是因为变量有效灌溉面积、施肥量与播种面积间有较强的相关性,所以方程存在多重共线性。现在我们看看各解释变量间的相关性,相关系数矩阵如下:X1 X2 X3 X410.8960.8800.7150.89610.8950.6850.8800.89510.8830.7150.6850.8831X1X2 X3X4表中r120.896,r130.895,说明施肥量与有效灌溉面积和播种面积间高度相关。我们可以通过对变量X2的变换来消除多重共线性。令X22X2/X3(公斤/亩),这样就大大降低了施肥量与面积之间的相关性,用变量X22代替X2,对模型重新回归,结果如下: =233.62 + 0.088X1 + 13.66*X2 + 0.096X3 - 0.099X4 R20.91t: (-3.10) (2.48) (3.91) (4.77) (-3.19)从回归结果的t值可以看出,现在各个变量都已通过显著性检验,说明多重共线性问题基本得到解决。第八章 时间序列分析8.1 单项选择题(1)A (2)D(3)B (4)B8.2 首先同时估计出ADF检验中三个模型的适当形式,然后通过ADF临界值表检验原假设;只要有一个模型的检验结果拒绝了原假设,就可以认为时间序列是平稳的;如果三个模型的检验结果都不能拒绝原假设时,则认为时间序列是非平稳的。8.3 第一,所选模型的随机扰动项为白噪声;第二,所选模型的AIC和SC值较小;第三,所选模型尽量简练;第四,所选模型拟合优度较高(第二条的另一种表述)等。8.4 Yt,XtCI(1, 1),协整向量是(1, -0, -1),能。8.5 答案略,请参照相关章节的案例进行上机练习。8.6 可能的扩展形式有ARCH-M(q)模型、GARCH-M(p,q)模型、对称的TRACH模型、非对称的EGARCH模型、PARCH模型、成分ARCH模型等,各个扩展模型的具体形式参加相关文献。8.7 (1)因为|2.35小于临界|值,表明住宅开工数时间序列是非平稳的。(2)按常规检验,t的绝对值达到2.35,可判断为在5水平上显著,但在单位根的情形下,临界|t|值是2.95而不是2.35。(3)由于的|值远大于对应的临界值,因此,住宅开工数的一阶差分是平稳时间序列。8.8 (1) 在一阶差分回归式(B)中,两变量之间仍存在正相关关系,可是弹性系数降的很厉害,弹性系数的显著下降提示我们,问题可能是两变量间不存在协整关系。(2)和(3) 由回归C,两变量似乎是协整的,因为5%的临界位为-2.6227,而估计的位为-2.2521,可是1%的临界位为-2.6227,表明两变量不是协整的。如果我们在回归C中加上截距项和时间趋势,则DF检验将表明两变量不是协整的。(4)此方程给出的是M1和GDP的对数之间的短期关系。这是因为给出的方程考虑了误差调整机制(ECM),它试图在两变量离开其长期通道的情况下,恢复均衡。可是,方程中误差项在5%水平上不显著。如我们在(2)和(3)中所讨论的,由于协整检验的各结果相当混乱,使人难以得出所提供的回归结果A是否伪回归的明确结论。8.9 用表中的人口(pop)时间序列数据,进行单位根检验,得到如下估计结果: 两种情况下,t值分别为0.40和 -0.88,从DickeyFuller统计量临界值表中可以看出,两者分别大于从0.01到0.10的各种显著性水平下的值和值。因此,两种情况下都不能拒绝原假设,即私人消费时间序列是非平稳序列。下面看一下该序列的一阶差分(dpop)的平稳性。做类似于上面的回归,得到如下结果:其中dpopt=dpopt-dpopt-1。两种情况下,t值分别为-3.287和-3.272,从DickeyFuller统计量临界值表中可以看出,第一个检验小于从0.025到0.10的各种显著性水平下的值和值;第二个检验小于0.10显著性水平下的值。因此,在0.10显著水平下,二者都拒绝原假设,即人口一阶差分时间序列没有单位根,或者说该序列是平稳序列。综合以上结果,我们的结论是:dpopt是平稳序列,dpoptI(0)。而popt是非平稳序列,由于dpoptI(0),因而poptI(1)。8.10 步骤一:求出三变量的单整的阶 (1)对三变量原序列的单位根检验从DickeyFuller统计量临界值表中可以看出,三个序列的t值分别大于从0.01到0.10的各种显著性水平下的值和值。因此,三个序列的单位根检验都不能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论