




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的测试卷一选择题(共8小题)1(2012烟台)如图,O1,O,O2的半径均为2cm,O3,O4的半径均为1cm,O与其他4个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形O1O4O2O3的面积为()A12cm2B24cm2C36cm2D48cm22(2012无锡)已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A20cm2B20cm2C15cm2D15cm23(2012潍坊)已知两圆半径r1、r2分别是方程x27x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A相交B内切C外切D外离4(2012山西)如图,AB是O的直径,C、D是O上一点,CDB=20,过点C作O的切线交AB的延长线于点E,则E等于()A40B50C60D705.如图,以M(5,0)为圆心、4为半径的圆与x轴交于AB两点,P是M上异于AB的一动点,直线PAPB分别交y轴于CD,以CD为直径的N与x轴交于E、F,则EF的长()A等于4 B等于4 C等于6 D随P点而变化6(2012北海)如图,等边ABC的周长为6,半径是1的O从与AB相切于点D的位置出发,在ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则O自转了()A2周B3周C4周D5周7(2011淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的O与弧AE,边AD,DC都相切把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是O,则AD的长为()A4BCD58(2011桂林)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为()ABCD9(2012鄂州)如图,四边形OABC为菱形,点A,B在以O为圆心的弧上,若OA=2,1=2,则扇形ODE的面积为()ABC2D310. 如图,在ABC中,分别以AB、BC为直径的O1、O2交于AC上一点D,且O1经过点O2,AB、DO2的延长线交于点E,且BE=BD则下列结论不正确的是()A.AB=AC B. BO2E=2E C.AB=BE D. O2E=BE二填空题(共5小题)9(2012镇江)如图,在平面直角坐标系xOy中,直线AB经过点A(4,0)、B(0,4),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为_10(2012烟台)如图,在RtABC中,C=90,A=30,AB=2将ABC绕顶点A顺时针方向旋转至ABC的位置,B,A,C三点共线,则线段BC扫过的区域面积为_11(2012仙桃天门潜江江汉)平面直角坐标系中,M的圆心坐标为(0,2),半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的N与M相切,则圆心N的坐标为_12(2012遵义)如图,AB是O的弦,AB长为8,P是O上一个动点(不与A、B重合),过点O作OCAP于点C,ODPB于点D,则CD的长为_13(2008威海)如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;按照这样的规律进行下去,点An的坐标为_三解答填空题(共1小题)14(2009呼和浩特)如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s)(1)当t=_s时,四边形PQCD为平行四边形;(2)当t=_s时,PQ与O相切四解答题(共7小题)15(2012珠海)已知,AB是O的直径,点P在弧AB上(不含点A、B),把AOP沿OP对折,点A的对应点C恰好落在O上(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD直线AP于D,且CD是O的切线,证明:AB=4PD16(2012孝感)如图,AB是O的直径,AM,BN分别切O于点A,B,CD交AM,BN于点D,C,DO平分ADC(1)求证:CD是O的切线;(2)若AD=4,BC=9,求O的半径R17(2012黔西南州)如图,ABC内接于O,AB=8,AC=4,D是AB边上一点,P是优弧的中点,连接PA、PB、PC、PD,当BD的长度为多少时,PAD是以AD为底边的等腰三角形?并加以证明18(2012济宁)如图,AB是O的直径,AC是弦,ODAC于点D,过点A作O的切线AP,AP与OD的延长线交于点P,连接PC、BC(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论(2)求证:PC是O的切线19(2011芜湖)如图,已知直线PA交O于A、B两点,AE是O的直径,点C为O上一点,且AC平分PAE,过C作CD丄PA,垂足为D(1)求证:CD为O的切线;(2)若DC+DA=6,O的直径为10,求AB的长度20(2007芜湖)已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长21如图,线段CD是O的弦,O的半径是R,点A是优弧CD上的一个动点,作ABCD于E(点E在线段CD上但不与点CD重合),AB交O于B,连接ACCBBDDA(1)如图1,若AB经过圆心O,试探索ADBC和R之间存在着什么样的数量关系?请用一个等式表达出来并证明你的结论(2)如图2图3,若AB不经过圆心O时,你探索的上述结论是否依然成立?若不成立,请说明理由;若成立,请任意选一图证明(3)作OFAD于F,试利用图1探索OF与BC之间存在着什么样的数量关系?请用一个等式表达出来(不要求证明);你探索的这个结论在图2图3中依然成立吗?(只要求回答成立还是不成立,不要求写理由或证明)22.(2007襄阳)如图,ABC内接于O,点P是ABC的内切圆的圆心,AP交边BC于点D,交O于点E,经过点E作O的切线分别交AB、AC延长线于点F、G(1)求证:BCFG;(2)探究:PE与DE和AE之间的关系;(3)当图中的FE=AB时,如图,若FB=3,CG=2,求AG的长23.我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形(1)根据“奇异三角形”的定义,小华提出命题“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在RtABC中,C=90,AB=c,AC=b,BC=a且ba,若RtABC是奇异三角形,求a:b:c(3)如图,AB是O的直径,C是O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在O内存在点E,使AE=AD,CB=CE求证:ACE是奇异三角形;当ACE是直角三角形时,求AOC的度数24(2008永州)如图,已知O的直径AB=2,直线m与O相切于点A,P为O上一动点(与点A、点B不重合),PO的延长线与O相交于点C,过点C的切线与直线m相交于点D(1)求证:APCCOD;(2)设AP=x,OD=y,试用含x的代数式表示y;(3)试探索x为何值时,ACD是一个等边三角形25(2008佛山)我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法)请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D)请你根据所构造的图形提出一个结论,并证明之;(3)如图3,其中AB是圆O的直径,AC是弦,D是ABC的中点,弦DEAB于点F请找出点C和点E重合的条件,并说明理由 附加题 26. 1(2008长沙)如图,六边形ABCDEF内接于半径为r(常数)的O,其中AD为直径,且AB=CD=DE=FA(1)当BAD=75时,求 弧BC的长;(2)求证:BCADFE;(3)设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并指出x为何值时,L取得最大值27. (2008嘉兴)如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且OA B为正三角形,OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墨模制作工特殊工艺考核试卷及答案
- 洪山区潜水施工方案
- 【道法】走进社会生活单元思考与行动课件-2025-2026学年统编版道德与法治八年级上册
- 金堂市场咨询方案公示
- 虹口区营销公司注册方案
- 咨询公司方案评估流程
- 建筑方案设计服务保障书
- 外墙氟碳涂装施工方案
- 高中篮球节活动方案策划
- 建筑外立面方案设计合同
- 儿童游乐园活动方案
- 诊疗器械器具和物品清洁消毒
- 2025-2030中国钙钛矿光伏产业运行态势展望与投资前景规模研究研究报告
- T/CAPE 11005-2023光伏电站光伏组件清洗技术规范
- 理性思维的重要性试题及答案
- 2024江苏苏州市常熟农商银行网络金融部招聘4人笔试历年典型考题及考点剖析附带答案详解
- 钢结构主体验收评估报告
- 人教版历史与社会七下第八单元第三课《中华文明探源》教学设计
- 更换钢板施工方案
- 2025至2030中国电力巡检无人机行业深度评估与投资风险预警报告
- 大学生职业规划大赛《机械电子工程专业》生涯发展展示
评论
0/150
提交评论