




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OverviewofResearchMethodologiesQUANTITATIVERESEARCHMETHODS TableofContents PartI IntroductionToBasicQuantitativeMethodsPartII CaseStudy BrandTrackingStudyDemonstrationUsingSPSS14 0SampleSizeCalculationOverviewofDataComposition Scale Typesofvariablesetc ExploratoryDataAnalysisBasicStatisticalTestsToDetectDifferencesBetweengroupsofdoctorsBetweenbrandsStatisticalTestsToDetectRelationshipsStatisticalHypothesisTestingPartIII IntroductionToAdvancedQuantitativeMethodsFactorAnalysisPerceptualMappingSegmentationAnalysis PARTIINTRODUCTIONTOBASICQUANTITATIVEMETHODS DefinitionofQuantitativeResearch Quantitativeresearchisnumericallyorientedandofteninvolvesstatisticalanalysis Themainrulewithquantitativeresearchisthateveryrespondentisaskedthesameseriesofquestions Thisapproachisverystructuredandnormallyinvolveslargenumbersofinterviews TypesofData Numericaldatagenerallycomeintwokinds MEASUREMENTDATA sometimescalledquantitativedata Onanaveragehowmanypatientswithdiabetesdidyoutreatinamonth patientsCATEGORICALDATA alsoknownasfrequencydataorcountdata Whatisyourspecialty Pleasetickone1 Cardiologists 2 Endocrinologists3 Nephrologists4 InternalMedicine5 GeneralPractitioner ScalesofMeasurement Measurementisfrequentlydefinedastheassignmentofnumberstoobjects INTERVALSCALEinwhichwecanspeakofdifferencesbetweenscalepointsHowmanyyearsyouhavebeeninpractice yearsORDINALSCALEwhichorderspeople objectsoreventsalongsomecontinuumHowsatisfiedyourarewithbrandA 1 Notatallsatisfied2 Notsatisfied3 Neutral4 Satisfied5 VerysatisfiedNOMINALSCALEisnotreallyascaleastheydonotscaleitemsalonganydimensionWhatisyourgender Pleasetickone1 Male2 FemaleInwhichstatedoyounormallypractice Pleasetickone1 ACT2 NSW3 NT4 QLD5 SA6 TAS7 VIC8 WA CompositionofData Adatatypicallyconsistsof VARIABLESarepropertiesorcharacteristicsofastudyortherapytypeetc e g attitudinalstatements productcharacteristics functionalandemotionalattributes patientflowetc CASEStypicallycorrespondtorespondentse g Doctors Patients Pharmacistsetc RESPONSESarevaluesassignedtoeachvariablee g 1 2or3etc TypesofVariables Thevariablesfallundertwotypesdependingondifferentvaluesassigned DISCRETEVARIABLESinwhichthevariablecantakeononlyoneofarelativelyfewpossiblevaluese g Gender Location Specialtyetc CONTINUOUSVARIABLESinwhichthevariablecouldassumeanyvaluebetweenthelowestandhighestpointsonthescalee g Numberofpatientstreated DiagnosticparameterslikeBP LDL C HDL C HbA1cetc Wecanalsodistinguishbetweendifferenttypesofvariablesinanadditionalway DEPENDENTVARIABLEisthevariableofinterestorwhosevalueswewishtopredicte g OverallbrandsatisfactionINDEPENDENTVARIABLES alsoreferredasexplanatoryvariablesorpredictorvariables arethevariableswhichinfluencesoraffectsdependentvariable e g Importancestatements productcharacteristics INFERENTIALInferentialstatisticsareconcernedwithusingSAMPLEStoinfersomethingaboutPOPULATIONS Populationcanrangefromarelativelysmallsetofnumbers Whichiseasilycollected toaninfinitelylargesetofnumbers whichcanneverbecompletelycollected HenceweareforcedtodrawonlyaSAMPLEofobservationsfromthatPOPULATIONRangeofstatisticaltestsareavailabletochoosefromwhichdependsontheobjectivesofthestudy TypesofDataAnalysis EXPLORATORYExploratorytechniquesareusedforpresentingdatainvisuallymeaningfulways Also thesetechniquesareusedforinitialdatascreeningpurposes FrequencydistributionsHistogramsBoxandWhiskerplotsStemandLeafplotsMissingvaluesOutliers DESCRIPTIVEDescriptivestatisticaltestsareusedtodescribeasetofdata MeanMedianModeSumMeasuresofdispersionMinimumMaximumRangeVarianceStandarddeviationStandarderrorDistributionKurtosisSkewness ProbabilitySamplingMethodsThismethodgivesallmembersofthepopulationaknownchanceofbeingselectedforinclusioninthesample MethodsofSampling Non probabilitySamplingMethodsThequotas quotasampling withinsubgroupsaresetbeforehandusuallyproportionsaresettomatchknownpopulationdistributions Interviewersthenselectrespondentsaccordingtothesecriteriaratherthanatrandom Thesubjectivenatureofthisselectionmeansthatonlyaboutaproportionofthepopulationhasachanceofbeingselectedinatypicalquotasamplingstrategy SampleSizeCalculationGeneralRules Whatmarginoferrorcanyouaccept Themarginoferroristheamountoferrorthatyoucantolerate Lowermarginoferrorrequiresalargersamplesize5 isacommonchoiceWhatconfidenceleveldoyouneed Theconfidencelevelistheamountofuncertaintyyoucantolerate Higherconfidencelevelrequiresalargersamplesize Typicalchoicesare90 95 or99 Whatisthepopulationsize Howmanypeoplearetheretochooseyourrandomsamplefrom Whatistheresponsedistribution Foreachquestion whatdoyouexpecttheresultswillbe Ifthesampleisskewedhighlytooneend thepopulationprobablyis too Ifyoudon tknow use50 Thisgivesthelargestsamplesize Themostconservativechoiceis50 SampleSizeCalculationInfinitevs FinitePopulation INFINITEPOPULATIONThesamplesizedoesnotchangemuchforpopulationslargerthan20 000FINITEPOPULATIONInpharmaceuticalmarketresearchstudieswecommonlyencounterasmallpopulation i e finitepopulation incertaintherapyareassuchasOncology Nephrology Neurologyetc InsuchsituationsthesamplesizecalculationmustincorporateFINITEPOPULATIONCORRECTION FPC Withsmallpopulations wemayhavetointerviewasignificantproportionofthepopulationtoachievestableestimatesHowever onceapopulationreachesabout5000ormore wecangenerallyignorethefinitepopulationcorrectionfactor asithasverysmallimpactonsamplesizedecisions SamplingDesignSourcesofError BIAS occurswhenflawedsamplingprocedureisused Biascannotbemeasured andtheselectionofalargersampledoesnotcorrectforthefactthatthesampleisbiasedSAMPLINGERROR occurswhensamplesofrespondentsdeviatefromtheunderlyingpopulation Ifwehaveusedrandomsamplingmethod anysamplingerrorisduetoachance Withrandomsampling wereducesamplingerrorbyincreasingthesamplesize MEASUREMENTERROR arisesfrommanysourcesdatacollectionmethodsinterviewersqualityandexperiencerespondentsunderstandingofthequestionnairetypeofscalequestionnairedesigncontextofdatacollection StatisticalTestingParametricvs Non ParametricTests Theselectionbetweenaparametricornon parametrictestsdependonwhetherthedatabeinganalysedaresampledfromapopulationthatareNORMALLYDISTRIBUTED alsoreferredasGaussiandistribution ornotPARAMETRICSTATISTICALTESTS areusedwhennormalityismetNON PARAMETRICSTATISTICALTESTS ordistributionfreetests areusedwhennormalityisnotmetAnormaldistributionisasymmetric unimodaldistribution and bellshaped StatisticalTestingPropertiesofNormalDistribution 68 2 oftheresponsesfallwithinastandarddeviationof 1Themean medianandmodeareequalGenerallythedistributiontendtobecomenormalforasamplesizeofgreaterthan30 Mostmarketingquestions i e statistical fallroughlyintooneoftwooverlappingcategories DIFFERENCESIsthereanydifferencebetweenendocrinologistsandGPsintermsofoverallsatisfactionofdiabetestreatment Isthereanydifferencebetweenbrands RELATIONSHIPSIsthereanyrelationshipbetweenimportanceofproductattributesandoverallperformanceofagivenbrand StatisticalTestingDifferencesvs Relationships StatisticalHypothesisTesting Ahypothesistestusuallyderivesfromapriorresearchhypothesis usuallyQUALITATIVEstage statingthatarelationshipexistsbetweentwoormorevariables ortwoormoregroupswillbedifferentonsomecharacteristics Forexample Hypothesis Amongdoctors orthopaedicsbelieve Inpost menopausalwomenwithosteoporosis VitaminDinadequacyiswidespreadandneedstobecorrected thanGPsTotestthisresearchhypothesisstatistically wewouldformulatetwostatisticalhypothesis Nullhypothesis themeanfororthopaedicsontheabovestatementisequaltoorlessthanthemeanforGPs Expressedinsymbols Ho ortho GPAlternativehypothesis themeanfororthopaedicswillbegreaterthanthemeanforGPs Expressedsymbolically H1 ortho GPThetwohypothesesaremutuallyexclusive Theycannotbothbetrue Asaresearcherperformingastatisticaltest wemustultimatelymakeoneoftwodecisionsrelativetothenullhypothesisChoosingastatisticaltesttotesttheresearchhypothesisOne tailedtest isusedifweknowthedirectionofthehypothesiseddifferencei e OrthopedicsbelievethanGPsTwo tailedtest isusedifwedonotknowthedirectionofthatdifference ChoosingaBasicStatisticalTest DIFFERENCES RELATIONSHIP NOTE Theseanalyseswillbedemonstratedwiththehelpofacasestudy PARTIICaseStudy BrandTrackingStudy DemonstrationUsingSPSS14 0SampleSizeCalculationOverviewofDataComposition Scale TypesofvariablesExploratoryDataAnalysisBasicStatisticalTestsToDetectDifferencesBetweengroupsofdoctorsBetweenbrandsStatisticalTestsToDetectRelationshipsHypothesisTesting PARTIIIINTRODUCTIONTOADVANCEDQUANTITATIVEMETHODS MULTIVARIATETECHNIQUES CaseStudyFactorAnalysisPerceptualMappingSegmentationAnalysis MultivariateTechniques Multivariatetechniquesarebroadlygroupedintotwocategories INTERDEPENDENTtechniquesareusedtoeithergroupingsimilarcustomersorvariablesToidentifytargetcustomersegments groupingcustomers Toidentifyunderlyingattitudinal emotional themes or factors groupingvariables DEPENDENTtechniquesareusedtostudytheeffectofanumberofvariablesononeormorevariablesToidentifydriversofbrandsatisfaction satisfactionvs product attitudinal emotionalattributes ChoosingaMultivariateTechniqueInterdependentTechniques NOTE Theseanalyseswillbediscussedindetail ChoosingaMultivariateTechniqueDependentTechniques FactorAnalysis FactoranalysisisanexploratorydataanalysistechniqueoftenusedasadatareductionmethodFactoranalysistransformsasetofcorrelatedvariablesintofewerconceptualdimensionsknownas factors Factornamesareprovidedbyanalyst basedondominantorcommonattributeswithinthebundleofattributes Samplesizeconsiderations Thecommonruleistohaveatleast10 15responsesperattribute FactorAnalysisCaseStudy MARKETINGAPPLICATIONAmarketerhavemeasured30differentPERCEPTIONATTRIBUTESthatareconsideredimportanttoaspecifictherapyareaThemarketerwantedtoidentifyunderlyingthemesorfactorswithinthose30attributesratherthanevaluatingindividualattributes TOOLBasedonintercorrelationsamongthese30ATTRIBUTES factoranalysisreducedthemto7THEMESORFACTORSThishashelpedthemarketertofocusanddevelopmarketingstrategyaccordinglyThishasalsohelpedthemarketresearchertoreducethenumberofattributestobeincorporatedinthequestionnaireforfuturestudies FactorAnalysisCaseStudy QUESTIONNAIREPleaseindicateyourlevelofagreementwitheachofthefollowingstatementsastheyapplytothetreatmentofa specifictherapyarea Usingthe5 pointscaleshown where 1 means stronglydisagree 5 means stronglyagree pleasecrossthemostappropriateresponse Attribute1Attribute2 Attribute30 FactorAnalysisIdentificationofUnderlyingThemes The30perceptionstatementsratedbyrespondentsaresimplifiedinto7keythemesorfactorsusingfactoranalysis FactorAnalysis FactorAnalysis The30perceptionstatementsratedbyrespondentsaresimplifiedinto7keyfactorsorcomponentsusingfactoranalysis FactorAnalysisIdentificationofUnderlyingThemes PerceptualMapping PerceptualmapisavisualrepresentationofTWOdatasetssuchasdifferentbrandsandproductattributesdifferentbrandsanddemographictraitsdifferentcorporationsandkeyimageattributesetc PerceptualmapisproducedbyusingTWOdifferenttechniques CorrespondenceanalysisMultidimensionalscaling PerceptualMappingCaseStudy MARKETINGAPPLICATIONAmarketerwantedtoidentifyhow5DIFFERENTBRANDSareperceivedon8KEYATTRIBUTESasappliedtoaspecifictherapyareaTOOLCorrespondenceanalysisproducedaperceptualmapwhichpositionsbrandsagainstattributesonatwodimensionalmapThishashelpedthemarketertoUNDERSTANDBRANDPOSITIONING PerceptualMappingCaseStudy QUESTIONNAIREBasedonyourknowledgeandexperiencewiththebrand pleaseidentifypresenceorabsenceofbelow8attributesthatabrandmayhaveBrand1Brand2Brand3Brand4Brand5Attribute1Attribute2 Attribute8 PerceptualMapping Brandsvs Attributes BrandE BrandA BrandB BrandD BrandC Worksfast Improvesbonequality Preventshipfractures Safeforlong termuse Convenience Preventsvertebralfractures Welltolerated Therelativeperceivedpositioningofthevarious5brandsvs 8productattributes IncreasesBMD SegmentationAnalysis Thepurposeofsegmentationanalysisistoformgroupsofrespondents doctors patientsetc suchthat withrespecttoclusteringvariable s eachgroupisashomogenousaspossibleandasdifferentfromtheothergroupsaspossible ThereareTWOmainroutestosegmentation Apriorisegmentation referredasOUTSIDE IN ThesegmentsareASSUMEDbefore handsuchasbasedondemographics geographicetc Cluster basedsegmentation INSIDE OUT ThesegmentsareNOTASSUMEDbefore handbutidentifiedbasedonhomogeneityexhibitedbyrespondentsoncertainparameterssuchasbehaviouralattributes perceptionstatements attitudetowardsnewdrugintroductionetc NOTE Thiswillbediscussedindetail VARIABLESELECTIONisthesinglemostcrucialstepinclusteranalysisTheselectionofvariabledependsonthetypeofbusinessobjectivethatwehaveinmind Wemaywanttosegmentrespondentsbasedon benefitsegmentation or need basedsegmentation or attitudinalsegmentation etc ThevariablesthatmeetourbusinessobjectivearechosenforclusteranalysisThesegmentsarethenprofiledtoidentifydistinctdifferencesbetweenthesegmentsThenumberofclusters i e segments dependsonthefollowingcharacteristics Meaningfulness HowsensibleormeaningfulthesegmentsareAccessibility HoweffectivelycanthesegmentbereachedSustainability ThedegreetowhichthesegmentsarelargeorprofitableenoughActionability Thedegreetowhichtheycanhaveprogramsdesignedforthem SegmentationAnalysisGeneralRules SegmentationAnalysisCaseStudy MARKETINGAPPLICATIONPurposeofthesegmentationstudywastoidentifygroupofdoctorswhoaremostlikelytoadopt prescribeaspecificnewdruginorderto DisproportionatelyinvestagainstthelikelyadoptersofthenewdrugatlaunchIdentifywhichsegmentwouldbemostvaluableto CompanyA bothintheshortandlongtermDevelopvaluepropositionsandmessagesthatwillresonatewitheachsegmentUnderstandwhichmarketingmixwouldbemosteffectiveforeachsegment MeaningfulnessandActionabilityCriteria Anoptimalsegmentationshouldbetheonethatismost Meaningful showsstrongestdifferencesinourmeaningfulnesscriteriaActionable segmentsareidentifiable message able andreachablethroughourlevers Meaningfulness Actionability Howwellmultiplesegmentsdifferentiatedagainstthefollowinge g ProductAdoptionPatterns earlyvs lateTestingpreferencesindiagnosingImportanceattributes Arethesegments Message able MessageresonanceandhotbuttonsReachable LearningPreferencesandPatterns SegmentSize Asolutionfocusingonlikelihoodtoprescribethenewdrugrosetothetopofthedatasettoprovideatangiblesegmentationscheme SophisticatedTreater TraditionalTreater SegmentProfile SegmentProfile SegmentIdentification Thefirststepofimplementationrequiresustodevelopatypingtooltocategorisephysiciansintooursegments Weareprimarilyconcernedwithhowaccuratelywecancategorizethesesegments Development Adoption Howaccuratelycanwedetermineaphysiciansegment ofquestionsintypingtool Whatisthebestwaytoinco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神奇飞书教学课件下载
- 萍乡地下室防腐施工方案
- 小儿全麻手术中护理配合
- 下肢动脉血栓形成的护理
- 内部市场化培训
- 随州顶管施工方案费用
- 现浇砼雨水口施工方案
- 民爆安全员题库及答案解析
- 爆炸车辆维修方案范本
- 政府会务保障方案范本
- 木工课堂安全管理制度
- 全屋定制合同赔付协议书
- 【《基于Matlab的电力系统电压稳定L指标计算与灵敏度分析》18000字】
- 2025-2030中国中药饮片行业发展分析及发展战略研究报告
- 肠菌移植治疗炎症性肠病专家共识(2025版)解读
- 小班语言活动《笑嘻嘻》
- NHSS系列钢丝绳手扳葫芦
- 运动康复项目介绍
- 英语横向课题申报书
- 2025中国地中海贫血祛铁治疗指南解读
- 妊娠期女性的护理
评论
0/150
提交评论