数学8年级分式问题.doc_第1页
数学8年级分式问题.doc_第2页
数学8年级分式问题.doc_第3页
数学8年级分式问题.doc_第4页
数学8年级分式问题.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二学生在小学学习过分数,在此基础上学习分式,难度不大 分式第一节 分式的基本概念形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。 掌握分式的概念应注意: 判断一个式子是否是分式,不要看式子是否是A/B的形式,关键要满足 (1)分式的分母中必须含有未知数。 (2)分母的值不能为零,如果分母的值为零,那么分式无意义。 由于字母可以表示不同的数,所以分式比分数更具有一般性 分式的法则1.约分: 把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。 2.分式的乘法法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 3. 分式的加减法法则: 同分母的分式相加减,分母不变,把分子相加减。 4.通分: 异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6.即:3*3/2*3,2*2/3*2! 5.异分母分式的加减法法则: 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。 (1).定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 A/B 叫做分式(fraction)。 注:A/B=A1/B (2).组成:在分式 中A称为分式的分子,B称为分式的分母。 (3).意义:对于任意一个分式,分母都不能为0,否则分式无意义。 (4).分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。 注:分式的概念包括3个方面:分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。 第二节 分式的基本性质和变形应用V.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。 VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分 VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式. VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本性质2.(2)分式的约分和通分都是互逆运算过程. 第三节 分式的四则运算XI.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减. XII.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. XIII.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. XIV.分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. 第四节 分式方程XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程. XVII.分式方程的解法:去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);按解整式方程的步骤求出未知数的值;验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).四第一课时教学目标(一)知识认知要求1.在现实情境中进一步理解用字母表示数的意义,发展符号感.2.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.3.掌握分式有意义的条件,认识事物间的联系与制约关系.(二)能力训练要求1.能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.2.培养学生认识特殊与一般的辩证关系.(三)情感与价值观要求通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.五第一课时教学重难点1.了解分式的形式 (A、B是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.2.掌握分式基本性质的内容,并有意识地运用它化简分式.教学难点1.分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零.2.分子分母进行约分. 教学过程一、创设问题情境,引入新课我们先试着解答下面的问题:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成任务.原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果原计划每月固沙造林x公顷,那么原计划完成一期工程需要_个月,实际完成一期工程用了_个月.根据题意,可得方程_.根据题意,我认为这个问题的等量关系是:实际固沙造林所用的时间+4=原计划固沙造林所用的时间.(1)这个问题的等量关系也可以是:原计划每月固沙造林的公顷数+30=实际每月固沙造林的公顷数.(2)如果用第(1)个等量关系列方程,应如何设出未知数呢?因为第(1)个等量关系是工作时间的关系,因此需用已知条件和未知数表示出工作时间.题中的工作量是已知的.因此需设出工作效率即原计划每月固沙造林x公顷.(教师可巡视同学们回答问题情况).原计划完成一期工程需 个月,实际完成一期工程需c 个月,根据等量关系(1)可列出方程:+4= .思考:如何用等量关系(2)设未知数,列方程呢?因为等量关系(2)是工作效率之间的关系,根据题意,应设出工作时间.不妨设原计划x个月完成一期工程,实际上完成一期工程用了(x4)个月,那么原计划每月固沙造林的公顷数为 公顷,实际每月固沙造林 公顷,根据题意可得方程 .同学们观察我们列出的两个方程,有什么新的发现?像 这样的代数式同整式有很大的不同,而且它是以分数的形式出现的,它们是不同于整式的一个很大的家族,我们把它们叫做分式.从现在开始我们就来研究分式,相信同学们只要去认真了解分式家族中每个成员的特性,不久的将来,一定会很迅速准确解出上面两个方程.二讲授新课 1.通过实例理解分式的意义及分式与整式的区别.下面我们再来看几个问题:做一做(1)正n边形的每个内角为_度.(2)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元?(3)有两块棉田,有一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这两块棉田平均每公顷的棉产量是多少?(4)文林书店库存一批图书,其中一种图书的原价是每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?(1) ;(2) 元; (3) 千克;(4) 册我们再来看议一议上面问题中出现了代数式 ,它们有什么共同特征?它们与整式有什么不同?(分组讨论后回答)上面的几个代数式的共同特征:(1)它们都是由分子、分母与分数线构成;(2)分母中都含有字母.它们与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.例如: 它们都含有分母,但分母中不含字母,所以它们是整式.下面我们给出这种代数式即分式的概念:整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么称 为分式,其中A称为分式的分子,B称为分式的分母.分式中,字母可以取任意实数吗?不可以.因为分式中分母含有字母,而分母是除式,不能为零.字母的取值就受到制约即字母的取值不能使分母为零,否则,分式就会无意义.2.例题讲解想一想(1)下列各式中,哪些是整式?哪些是分式?5x7,3x21, , ,5, , , .(2)当a=1,2时,分别求分式 的值.当a为何值时,分式 有意义?当a为何值时,分式 的值为零?(1)中5x7,3x21, ,5, 是整式; , ,是分式.(2)解:当a=1时, = =1;当a=2时, = = .当分母的值等于零时,分式没有意义,除此以外,分式都有意义.由分母2a=0,得a=0.所以,当a取零以外的任何实数时,分式 有意义.分式的值为零,包含两层意思:首先分式有意义,其次,它的值为零.因此a的取值有两个要求: 所以,当a=1时,分母不为零,分子为零,分式 为零.三、随堂练习 巩固分式的概念,讨论分式有意义的条件限制.1.当x取什么值时,下列分式有意义?(1) ;(2) ;(3) 分析:当分母的值为零时,分式没有意义,除此以外,分式都有意义.2.把甲、乙两种饮料按质量比xy混合在一起,可以调制成一种混合饮料,调制1 kg这种混合饮料需多少甲种饮料?四.课时小结 通过今天的学习,同学们有何收获?(鼓励学生积极回答)五.课后作业 习题3.1.第1、2、3题.六.活动与探究 已知x= ,求 的值直接代入求值,显然很麻烦,由已知 x= ,得2x= +1,2x1= .所以(2x1)2=5,x2x1=0即x2=x+1.我们利用x2=x+1可以使 降次从而求出它的值.结果= = = = = = = .第二课时(一)知识与技能目标使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简 (二)过程与方法目标通过分式的化简提高学生的运算能力(三)情感与价值目标渗透类比转化的数学思想方法教学重点理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简教学目标一、情境引入1数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”2问:这个富家子弟为什么会犯这样的错误?3分数约分的方法及依据是什么?(1) 的依据是什么? 呢?(2)你认为分式 与 相等吗? 与 呢?二.讲授新课1类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c0?解:c0,学生口答,教师设疑:为什么题目未给x0的条件?(引导学生学会分析题目中的隐含条件)例2 化简:(1) ;(2) 做一做 练习 课堂练习三、课堂小结 通过本节课学习,你有什么收获?四、作业 习题32第三课时 3.2分式的乘除法教学目标 (一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练教学重点掌握分式的乘除运算教学难点 分子、分母为多项式的分式乘除法运算教学目标一、情境导入通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d,已知球的体积公式为 (其中R为球的半径,)那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积的比是多少?2.观察下列运算:猜一猜 与同伴交流。 二、讲授新课经观察、类比不难发现 由学生自己归纳总结出分式乘除法法则例1计算(1) (2) 注意:分式运算的结果通常要化成最简分式或整式例2计算(1) (2) 小结:分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d,已知球的体积公式为 (其中R为球的半径,)那么(3)买大西瓜合算还是买小西瓜合算?三、课堂练习 P69 四、课堂小结:通过本节课的学习,你学到了哪些知识和方法?五、作业 习题33 第四课时 教学目标 (一)知识与技能目标1、会进行简单分式的加减运算,具有一定的代数化归能力2、引导学生不断小结运算方法和技巧,提高运算能力(二)过程与方法目标探索分式加减运算法则的过程,理解其算理(三)情感与价值目标在活动中培养学生乐于探究、合作学习的习惯,培养学生“用数学”的意识和能力教学重点:分式的加减运算 教学难点:异分母的分式加减法运算教学过程 一、情境引

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论