




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版七年级数学下册期末试卷及答案人教版七年级数学下册期末试卷参考答案 一、选择题:每小题3分,共30分。 1.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是() A.这1000名考生是总体的一个样本 B.近4万名考生是总体 C.每位考生的数学成绩是个体 名学生是样本容量 【考点】总体、个体、样本、样本容量. 【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可. 【解答】解:A、1000名考生的数学成绩是样本,故A选项错误; B、4万名考生的数学成绩是总体,故B选项错误; C、每位考生的数学成绩是个体,故C选项正确; D、1000是样本容量,故D选项错误; 故选:C. 【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. .4的算术平方根是() D.2 【考点】算术平方根. 【分析】根据算术平方根定义求出即可. 【解答】解:4的算术平方根是2, 故选:B. 【点评】本题考查了对算术平方根的定义的应用,主要考查学生的计算能力. .在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是() A. B. C. D. 【考点】利用平移设计图案. 【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B. 【解答】解:观察图形可知图案B通过平移后可以得到. 故选:B. 【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转. .下列命题错误的是() A.所有的实数都可用数轴上的点表示 B.等角的补角相等 C.无理数包括正无理数、0、负无理数 D.对顶角相等 【考点】命题与定理. 【分析】利于实数的定义、补角的性质及对顶角的性质分别判断后即可确定正确的选项. 【解答】解:A、所有的实数都可用数轴上的点表示,正确; B、等角的补角相等,正确; C、0不是无理数,故错误; D、对顶角相等,正确, 故选C. 【点评】本题考查了命题与定理的知识,解题的关键是了解实数的定义、补角的性质及对顶角的性质,难度不大. .若m1,则下列各式中错误的是() B.5m0 m 【考点】不等式的性质. 【分析】根据不等式的性质分析判断. 【解答】解:根据不等式的基本性质可知, A、6m6,正确; B、根据性质3可知,m1两边同乘以5时,不等式为5m C、m+10,正确; D、1m 故选B. 【点评】主要考查了不等式的基本性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变; (2)不等式两边乘(或除以)同一个正数,不等号的方向不变; (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. .如图,下列条件中,不能判断直线ABCD的是() A.HEG=EGF B.EHF+CFH=180 C.AEG=DGE D.EHF=CFH 【考点】平行线的判定. 【分析】A、因为HEG=EGF,由内错角相等,两直线平行,得出ABCD; B、因为EHF+CFH=180,由同旁内角互补,两直线平行,得出ABCD; C、因为AEG=DGE,由内错角相等,两直线平行,得出ABCD; D、EHF和CFH关系为同旁内角,它们互补了才能判断ABCD; 【解答】解:A、能,HEG=EGF,ABCD(内错角相等,两直线平行); B、能,EHF+CFH=180,ABCD(同旁内角互补,两直线平行); C、能,AEG=DGE,ABCD(内错角相等,两直线平行); D、由B知,D错误. 故选:D. 【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行. .若方程mx+ny=6的两个解是 , ,则m,n的值为() ,C.4,D.2,4 【考点】二元一次方程的解. 【专题】计算题. 【分析】将x与y的两对值代入方程计算即可求出m与n的值. 【解答】解:将 , 分别代入mx+ny=6中, 得: , +得:3m=12,即m=4, 将m=4代入得:n=2, 故选:A 【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. .已知y轴上的点P到原点的距离为5,则点P的坐标为() A.(5,0) B.(0,5)或(0,5) C.(0,5) D.(5,0)或(5,0) 【考点】点的坐标. 【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方. 【解答】解:由题中y轴上的点P得知:P点的横坐标为0; 点P到原点的距离为5, 点P的纵坐标为5, 所以点P的坐标为(0,5)或(0,5). 故选B. 【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑. .如图,ABED,AG平分BAC,ECF=70,则FAG的度数是() 【考点】平行线的性质. 【专题】计算题. 【分析】首先,由平行线的性质得到BAC=ECF=70;然后利用邻补角的定义、角平分线的定义来求FAG的度数. 【解答】解:如图,ABED,ECF=70, BAC=ECF=70, FAB=180BAC=110. 又AG平分BAC, BAG= BAC=35, FAG=FAB+BAG=145. 故选:B. 【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得BAC的度数是解题的难点. 10.若不等式组2 B. 【考点】一元一次不等式组的整数解. 【分析】首先确定不等式组的整数解,据此确定a的范围. 【解答】解:不等式组2 故 故选D. 【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 二、填空题:每小题4分,共24分。 11.如果“2街5号”用坐标(2,5)表示,那么(3,1)表示3街1号. 【考点】坐标确定位置. 【分析】根据有序数对的两个数表示的含义解答即可. 【解答】解:“2街5号”用坐标(2,5)表示, (3,1)表示“3街1号”. 故答案为:3街1号. 【点评】本题考查了坐标位置的确定,明确有序数对表示位置的两个数的实际含义是解决本题的关键. 12.如图,直线AB,CD交于点O,OEAB,OD平分BOE,则AOC=45度. 【考点】垂线;对顶角、邻补角. 【分析】由垂直的定义得EOB=90,再根据角平分线的性质可得DOB的度数,再根据对顶角相等可求得AOC. 【解答】解:OEAB, EOB=90, 又OD平分BOE, DOB= 90=45, AOC=DOB=45, 故答案为:45. 【点评】本题利用垂直的定义,对顶角和角平分线的性质的性质计算,要注意领会由垂直得直角这一要点. 13.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组. 【考点】频数(率)分布表. 【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数. 【解答】解:14350=93, 310=, 所以应该分成10组. 故答案为:10. 【点评】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数. 14.若点M(1,2a1)在第四象限内,则a的取值范围是 . 【考点】点的坐标;解一元一次不等式. 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【解答】解:点M(1,2a1)在第四象限内, 2a1 解得:a . 【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围. 15.若方程组 ,则3(x+y)(3x5y)的值是24. 【考点】解二元一次方程组. 【专题】整体思想. 【分析】把(x+y)、(3x5y)分别看作一个整体,代入进行计算即可得解. 【解答】解: , 3(x+y)(3x5y)=37(3)=21+3=24. 故答案为:24. 【点评】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单. 16.对于任意不相等的两个数a,b,定义一种运算如下:ab= ,如32= .那么124= . 【考点】二次根式的性质与化简. 【专题】新定义. 【分析】根据新定义的运算法则ab= 得出. 【解答】解:124= = = . 故答案为: . 【点评】主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即可. 三、解答题(一):每小题6分,共18分。 17.计算:|3| +(2)2. 【考点】实数的运算. 【专题】计算题. 【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果. 【解答】解:原式=34+ (2)+4=341+4=2. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.已知:代数式 的值不小于代数式 与1的差,求x的最大值. 【考点】解一元一次不等式. 【分析】先根据题意列出不等式,再求出不等式的解集,即可得出答案. 【解答】解:根据题意得: 1, 解这个不等式得:3(3x2)5(2x+1)15 x610x+515 x10x515+6 x4 x4, 所以x的最大值是4. 【点评】本题考查了解一元一次不等式的应用,能根据题意列出不等式是解此题的关键,用了转化思想. 19.按要求画图:将下图中的阴影部分向右平移6个单位,再向下平移4个单位. 【考点】利用平移设计图案. 【分析】将对应顶点分别向右平移6个单位,再向下平移4个单位即可得出答案. 【解答】解:如图所示: 【点评】此题主要考查了利用平移设计图形,根据已知正确平移图象的顶点坐标是解决问题的关键. 四、解答题(二):每小题7分,共21分。 0.解不等式组.并把解集在数轴上表示出来. . 【考点】解一元一次不等式组;在数轴上表示不等式的解集. 【专题】计算题;数形结合. 【分析】先解每一个不等式,再求解集的公共部分即可. 【解答】解:不等式去分母,得x3+62x+2, 移项,合并得x1, 不等式去括号,得13x+3 移项,合并得x2, 不等式组的解集为:2 数轴表示为: 【点评】本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分. 1.如图所示,直线a、b被c、d所截,且ca,cb,1=70,求3的大小. 【考点】平行线的判定与性质. 【专题】应用题. 【分析】根据题意可知ab,根据两直线平行同位角相等可知1=2,再根据对顶角相等即可得出3. 【解答】解:ca,cb, ab, 1=70 1=2=70, 2=3=70. 【点评】本题主要考查了平行线的判定以及平行线的性质,以及对顶角相等,难度适中. 2.某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示),根据图表解答下列问题: 组别 次数x 频数(人数) 第1组0x 第2组0x 第3组0x 第4组 110x 第5组 130x 第6组 150x (1)a=10,b14. (2)若七年级男生个人一分钟跳绳次数x130时成绩为优秀,则这50名男生中跳绳成绩为优秀的有多少人?优秀率为多少? (3)若该校七年级入学时男生共有150人.请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数. 【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表. 【分析】(1)根据频数分布直方图可直接得到答案,利用50减去落在各小组的频数即可得到b; (2)根据频数分布直方图可求得优秀的人数,然后根据 100%求得优秀率. (3)总人数优秀率=七年级男生个人一分钟跳绳成绩为优秀的人数. 【解答】解:(1)根据频数分布直方图知:a=10, b=502101842=14. 故答案为10,14; (2)成绩优秀的有:4+2=6(人), 优秀率为: 100%=12%; (3)15012%=18(人). 答:估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数为18人. 【点评】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息. 五、解答题(三):每小题9分,共27分。 3.如图,在四边形ABCD中,延长AD至E,已知AC平分DAB,DAB=70,1=35. (1)求证:ABCD; (2)求2度数. 【考点】平行线的判定与性质. 【分析】(1)根据角平分线的定义求得BAC的度数,然后根据内错角相等,两直线平行,证得结论; (2)根据平行线的性质,两直线平行,同位角相等,即可求解. 【解答】(1)证明:AC平分DAB, BAC=DAC= DAB= 70=35, 又1=35, 1=BAC, ABCD; (2)解:ABCD, 2=DAB=70. 【点评】本题考查了平行线的判定定理以及性质定理,解答此题的关键是:根据角平分线的定义求得BAC的度数. 4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示:根据图中的数据(单位:m),解答下列问题: (1)用含x、y的代数式表示地面总面积; (2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍.若铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元? 【考点】二元一次方程组的应用;列代数式. 【专题】图表型. 【分析】(1)客厅面积为6x,卫生间面积2y,厨房面积为2(63)=6,卧室面积为3(2+2)=12,所以地面总面积为:6x+2y+18(m2); (2)要求总费用需要求出x,y的值,求出面积.题中有两相等关系“客厅面积比卫生间面积多21”“地面总面积是卫生间面积的15倍”.用这两个相等关系列方程组可解得x,y的值,x=4,y= ,再求出地面总面积为:6x+2y+18=45,铺地砖的总费用为:4580=3600(元). 【解答】解:(1)地面总面积为:(6x+2y+18)m2. (2)由题意得 ,解得: , 地面总面积为:6x+2y+18=45(m2), 铺地砖的总费用为:4580=3600(元). 答:铺地砖的总费用为3600元. 【点评】第一问中关键是找到各个长方形的边长,用代数式表示面积;第二问解题关键是弄清题意,合适的等量关系,列出方程组.如:“客厅面积比卫生间面积多21”是6x2y=21,”“地面总面积是卫生间面积的15倍”是6x+2y+18=152y. 5.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力专家观点
- 武术课教学试讲课件
- 2025年河南省商丘市事业单位工勤技能考试题库及答案
- 工程项目管理进度控制标准模板
- 年产32500台工业信号转换器项目可行性研究报告
- 年产1.8万套SoC芯片项目可行性研究报告
- 年产3万套诊断标定软件项目可行性研究报告
- 年产12万吨己二酸硝酸氧化反应器项目可行性研究报告
- 2025年物业管理高级考试模拟试题及解析
- 2025年爆款流出酒店业必-备接待岗位招聘笔试试题解析
- 2026高考英语 写作-倡议信 复习课件
- 2025广东广州市从化区社区专职人员招聘33人笔试参考题库附答案解析
- 建材买卖(橱柜订购类)合同协议书范本
- 托管老师岗前培训
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 建筑施工应急处置明白卡
- 环境污染刑事案件司法解释学习课件
- 信息技术教学德育融合
- 护理品管圈QCC之提高手术物品清点规范执行率
- 高尔夫基础培训ppt课件
- 暴雨产流计算(推理公式_四川省)
评论
0/150
提交评论