高中数学 第二章 平面向量 2.5 平面向量应用举例例题与探究 新人教A版必修4.doc_第1页
高中数学 第二章 平面向量 2.5 平面向量应用举例例题与探究 新人教A版必修4.doc_第2页
高中数学 第二章 平面向量 2.5 平面向量应用举例例题与探究 新人教A版必修4.doc_第3页
高中数学 第二章 平面向量 2.5 平面向量应用举例例题与探究 新人教A版必修4.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5 平面向量应用举例典题精讲例1如图2-5-1,abcd是正方形,beac,ac=ce,ec的延长线交ba的延长线于点f,求证:af=ae.图2-5-1思路分析:建立适当的坐标系,根据坐标运算求出、的坐标,进而证明af=ae.证明:如图2-5-2,建立直角坐标系,设正方形边长为1,则a(-1,1),b(0,1).设e(x,y),则be=(x,y-1). =(1,-1).be,图2-5-2x(-1)-1(y-1)=0.x+y-1=0.又|=|,x2+y2-2=0.由(y=舍)即e(,).设f(m,1),由=(m,1)和ce=(,)共线,得m-=0.解得m=-2-.f(-2-,1), =(-1-,0), =().|=|.af=ae.绿色通道:把几何问题放入适当的坐标系中就赋予了有关点及向量的坐标,从而进行相关运算,使问题得到解决.变式训练已知abc中,a(7,8),b(3,5),c(4,3),m、n分别是ab、ac的中点,d是bc的中点,mn与ad交于f,求.思路分析:由已知条件可求出、的坐标,然后再由中点坐标公式进一步求出,进而再求出.解:a(7,8),b(3,5),c(4,3),=(3-7,5-8)=(-4,-3),=(4-7,3-8)=(-3,-5).又d是bc的中点,=(+)=(-3.5,-4).又m、n分别是、的中点,f为的中点.=-=(1.75,2).例2一条河的两岸平行,河的宽度为d=500 m,如图2-5-3所示,一艘船从a处出发航行到河的正对岸b处,船的航行速度为|v1|=10 km/h,水流速度为|v2|=4 km/h.图2-5-3(1)试求v1与v2的夹角(精确到1),及船垂直到达对岸所用的时间(精确到0.1 min);(2)要使船到达对岸所用时间最少,v1与v2的夹角应为多少?思路解析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与河水的流速的合速度.解:(1)依题意,要使船到达对岸,就要使v1与v2的合速度的方向正好垂直于对岸,所以|v|=9.2 km/h,v1与v的夹角满足sin=0.92,又为钝角,故v1与v2的夹角=114;船垂直到达对岸所用的时间t=60=3.3(min).(2)设v1与v2的夹角为(如图2-5-4),图2-5-4v1与v2在竖直方向上的分速度的和为|v1|sin,而船到达对岸时,在竖直方向上行驶的路程为d=0.5 km,从而所用的时间为t=,显然,当=90时,t最小,即船头始终向着对岸时,所用的时间最少,t=0.05 h=3 min.绿色通道:解决此类问题的关键在于明确“水速+船速=船的实际速度”,注意“速度”是一个向量,既有大小又有方向.结合向量应用的具体问题在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后再通过对这个数学模型的研究解释相关物理现象.变式训练如图2-5-5,一物体受到两个大小均为60 n的力的作用,两力夹角为60且有一力方向水平,求合力的大小及方向.图2-5-5解:设、分别表示两力,以oa、ob为邻边作oacb,则就是合力.据题意,oac为等腰三角形且coa=30,过a作adoc垂足为d,则在rtoad中,=cos30=60=30,故=2=60.故合力的大小为60 n,方向与水平方向成30角.例3(2006四川高考卷,理7)如图2-5-6,已知正六边形p1p2p3p4p5p6,下列向量的数量积中最大的是( )a. b. c. d.图2-5-6思路解析:设边长|=a,则p2p1p3=.|=a,=aa=,p2p1p4=,|=2a,=a2a=a2,=0,0,数量积中最大的是.答案:a黑色陷阱:本题易因找错向量的夹角或数量积公式用错而出现错误.平面向量的数量积作为平面向量的一个重要内容,由于涉及运算及能够同不等式相联系,因此是一个出题热点.预计此考点仍将是今后高考命题的热点.变式训练如图2-5-7,设四边形abcd是o的内接正方形,p是o上的任一点,求证:|2+|2+|2+|2与p点的位置无关.图2-5-7思路分析:根据向量的三角形法则表示出、,从而判断出|2+|2+|2+|2为定值.证明:设圆的半径为r.=-,=-,=-,=-.则|2=(-)2=-2+=2r2-2,|2=2r2-2,|2=2r2-2,|2=2r2-2,|2+|2+|2+|2=8r2-2(+)=8r2-20=8r2(定值).|2+|2+|2+|2与p点的位置无关.问题探究问题1一位年轻的父亲将不会走路的小孩的两条胳膊悬空拎起,结果造成小孩胳膊受伤,试一试你能用向量知识加以解释吗?导思:这是日常生活中司空见惯的事情,解决这个题目的关键是首先建立数学模型,然后根据数学知识来解决.针对小孩的两条胳膊画出受力图形,然后通过胳膊受力分析,建立数学模型:|f1|=,0,,来确定何种情景时,小孩的胳膊容易受伤.探究:设小孩的体重为g,两胳膊受力分别为f1、f2,且f1=f2,两胳膊的夹角为,胳膊受力分析如图2-5-8(不记其他因素产生的力),不难建立向量模型:|f1|=,0,当=0时,|f1|=;当=时,|f1|=|g|;又(0,)时,|f1|单调递增,故当(0,)时,f1(,|g|),当(,)时,|f1|g|.此时,悬空拎起小孩容易造成小孩受伤.图2-5-8问题2已知一只蚂蚁在地面上的一个三角形区域abc内爬行,试探究当蚂蚁爬到这个三角形区域的什么位置时,它到这个三角形的三个顶点间的距离的平方和最小?导思:像这个具体问题要采用其他的办法可能是比较困难的.这样的问题在考虑利用向量的知识来求解时,需要注意考虑如何恰当地将相关向量转化为密切相关的一些向量间的关系,从而将问题解决.探究:本题是一个应用问题,首先应考虑将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论