




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一 平行线等分线段定理庖丁巧解牛知识巧学一、平行线等分线段定理1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.用符号语言表述是:已知abc,直线m、n分别与a、b、c交于点a、b、c和a、b、c(如图1-1-2),如果ab=bc,那么ab=bc. 图1-1-2 图1-1-32.对于定理的证明,如图1-1-3所示,分mn和m不平行于n两种情况证明.当mn时,直接运用平行四边形加以证明;当m不平行于n时,利用辅助线构造相似三角形,进而得到关系式.3.定理的条件是a、b、c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a、b、c相交,即被平行线a、b、c所截.平行线的条数还可以更多. 方法点拨 定理图形的变式:对于3条平行线截两条直线的图形,要注意以下变化(如图1-1-4):如果已知l1l2l3,ab=bc,那么根据定理就可以直接得到其他直线上的线段相等.也就是说,直线de的位置变化不影响定理的结论.图1-1-44.定理的作用:利用本定理可将一线段分成n等分,也可以证明线段相等或转移线段的位置.图1-1-5 误区警示 平行线等分线段定理的逆命题是:如果一组直线截另一组直线成相等的线段,那么这组直线平行.这一命题是错误的,如图1-1-5.二、平行线等分线段定理的推论1.平行线等分线段定理的推论有两个,其中一个是经过三角形一边的中点,与另一边平行的直线必平分第三边;另一个是经过梯形一腰的中点,与底边平行的直线必平分另一腰.2.两个推论的证明如下:推论1:如图1-1-6(1),在acc中,ab=bc,bbcc,交ac于b点,求证:b是ac的中点.证明:如图1-1-6(2),过a作bb与cc的平行线,abc,ab=bc,由平行线等分线段定理,有ab=bc,即b是ac的中点.图1-16推论2:如图1-1-7(1),已知在梯形acca中,aacc,ab=bc,bbcc,图1-1-7求证:b是ac的中点.证明:梯形acca中aacc,bbcc,aabbcc.又ab=bc,由平行线等分线段定理,有ab=bc,即b是ac的中点.问题探究问题1 平行线等分线段定理与它的两个推论之间有着密切的联系,那么如何理解这种联系?思路:只要将平行线等分线段定理的图形中的直线只留下交点之间的部分,即可产生两个推论的图形,或者将两个推论中的线段延长成为直线,也可变成平行线等分线段定理的图形.探究:平行线等分线段定理与它的两个推论之间的关系可以直观地表示如图1-1-8:图1-1-8问题2 三角形中位线是三角形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明三角形中位线定理呢?思路:连结三角形两边中点的线段叫做三角形的中位线,这里要明确三角形的中位线和三角形的中线不同(如图1-1-9).三角形中位线定理的内容是:三角形中位线平行于第三边,并且等于它的一半.图1-1-9探究:证明:如图1-1-9,de是中位线,e是ac的中点,过点d作debc,则e也是ac的中点,所以e与e重合,de与de重合.所以debc.同理,过点d作dfac,交bc于f,则bf=fc.因为defc,dfec,所以四边形dfce是平行四边形.所以de=fc.又因为fc=bc,所以de=bc.上述过程中,de与de重合是定理证明的关键一步,本推理过程中应用了同一法思想.该定理的证明,关键在于添加辅助线,如图1-1-10所示的几种辅助线代表几种不同的证法.(1)(1)延长中位线de到f,使ef=de.(2)(2)延长中位线de到f,使ef=de得adcf.(3)作cfab与de的延长线交于点f.图1-1-10 三角形中位线定理是三角形的一个重要的性质定理,其特点是:同一题设,两个结论.一个结论是表明位置关系的,另一个结论是表明数量关系的,在应用时不一定同时需要两个关系,有时需要平行关系,有时要求倍分关系,可由具体情况按需选用.事实上,平行线等分线段定理的推论1:经过三角形一边中点与另一边平行的直线平分第三边,即三角形中位线判定定理.问题3 梯形中位线是梯形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明梯形中位线定理呢?梯形中位线定理与三角形中位线定理有什么内在联系?思路:梯形中位线的定义是:连结梯形两腰中点的线段叫做梯形的中位线.这里要强调梯形中位线是连结两腰中点的线段,而不是连结两底中点的线段.梯形中位线定理的内容是:梯形中位线平行于两底,并且等于两底和的一半.该定理证明的关键是如何添加辅助线,把梯形中位线转化成三角形的中位线.探究:设法把梯形中位线转化为三角形中位线.图1-1-11 如图1-1-11,欲使mn成为某一个三角形的中位线,则梯形的一腰一定是三角形的一边,而三角形的另一边一定过梯形另一腰的中点.梯形的一个底应在三角形的第三边上,若连结an并延长交bc的延长线于e(梯形的这种辅助线也经常用到),就能得到这样的abe.这时只要证明an=en,ad=ec,问题就解决了.关于梯形中位线与三角形中位线的一致性:由梯形中位线公式mn=(bcad),可知当ad退缩为一点时,其长度为零,则公式变为mn=bc.这就是三角形的中位线公式,这体现了梯形中位线和三角形中位线的联系和一致性,反映了它们之间的辩证关系.平行线等分线段定理的推论2“过梯形一腰的中点与底平行的直线必平分另一腰”,即梯形中位线.或说成“过梯形一腰的中点与底边平行的直线为梯形的中位线”,利用它可以判定某一线段为梯形中位线.典题热题例1如图11-1-2,已知在abc中,d是ac的中点,debc交ab于点e,efac交bc于点f.求证:bf=cf.图1-1-12思路分析:根据d是ac的中点,利用平行,得到e是ab的中点,再利用平行即可得到f是bc的中点.证明:在abc中,d是ac的中点,debc,e是ab的中点(经过三角形一边的中点与另一边平行的直线必平分第三边).又efac交bc于f,f是bc的中点,即bf=fc. 深化升华 在三角形中,只要给了一边的中点和平行线,根据平行线等分线段定理的推论2,就可得出平行线与另一边的交点即是中点.本题也可以利用平行四边形和全等形来证明,但会显得麻烦.例2求证:在直角梯形中,两个直角顶点到对腰中点的距离相等.如图11-1-3,已知在梯形abcd中,adbc,adc=90,e是ab边的中点,连结ed、ec.求证:ed=ec.图1-1-13思路分析:在梯形中,若已知一腰的中点,一般过这点作底边的平行线即可得到另一腰的中点.所以由e是ab边的中点,作efbc交dc于f,即可得efdc,从而利用线段中垂线的性质得到结论.证明:过e点作efbc交dc于f.在梯形abcd中,adbc,adefbc.e是ab的中点,f是dc的中点(经过梯形一腰的中点与底平行的直线必平分另一腰).adc=90,dfe=90.efdc于f.又f是dc中点,ef是dc的垂直平分线.ed=ec(线段垂直平分线上的点到线段两端点距离相等). 方法归纳 证明不在同一直线上的两条线段相等,可以根据等腰三角形的两腰相等,或者根据全等三角形对应边相等来证明.例3在abcd中,e和f分别是bc和ad边的中点,bf和de分别交ac于p、q两点,求证:ap=pq=qc.图1-1-14思路分析:在adq中,f是ad的中点,只要证明fpdq,即可由推论1得ap=pq;同理在cpb中,根据e是bc的中点,eqbp,由推论1得cq=pq,由此得到结论.证明:四边形abcd是平行四边形,e、f分别是bc、ad边上的中点,四边形bedf是平行四边形(一组对边平行且相等的四边形一定是平行四边形).在adq中,f是ad的中点,fpdq,p是aq的中点.ap=pq.在cpb中,e是bc的中点,eqbp.q是cp的中点.cq=pq.ap=pq=qc. 深化升华 本题两次利用了e、f是中点的条件,在利用平行线等分线段定理或推论时要把平行和中点两个条件摆齐.例4已知在abc中,cd平分acb,aecd于e,efbc交ab于f.求证:af=bf.图1-1-15思路分析:一般情况下,几何图形应具有对称的内在美,当感觉到图形有些缺点时,就要添加适当的辅助线,使其完善.本题中,aece于e,恰在三角形内部,而rtaec又不好用,所以延长ae使它与bc相交就势在必行了.证明:延长ae交bc于m.cd是acb的平分线,aece于e,在aec与mec中,ec=ce,aec=mec=90,acd=mcd.aecmec.ae=me.e是am的中点.又在abm中febc,点f是ab边的中点.af=bf.方法归纳 作辅助线的常用方法有延长某线段与另外的线段相交,连结两点,过一点作另外一条线段的平行线,过一点作另外一条线段的垂线等.例5如图11-1-6,以梯形abcd的对角线ac及腰ad为邻边作aced,dc的延长线交be于f,求证:ef=bf.图1-1-16思路分析:在eab中,ofab.要说明ef=bf,只要说明o是ae的中点,而o是平行四边形对角线的交点,根据平行四边形的对角线互相平分性质,可以知道o是ae的中点,于是问题得证.证明:连结ae交dc于o,四边形aced是平行四边形,o是ae的中点(平行四边形对角线互相平分).四边形abcd是梯形,dcab.在eab中,ofab,又o是ae的中点,f是eb的中点.ef=bf. 深化升华 证题时,当一个条件有几个结论时,要选择与其有关联的结论.本题可延长ec,在梯形abcd内构造平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胶合板购销合同
- Unit 1~Unit 2 基础综合卷(含答案)译林版(2024)七年级英语上册
- 烹饪营养与卫生(第3版)-课件 3.项目二任务六.坚果类
- 应交增值税课件
- 巡逻养护安全培训内容课件
- 2025年港股海外中资股投资策略分析报告:花开堪折直须折
- 输电运维班组课件
- 输煤运行安全培训需求课件
- 小鸭救小鸡教学课件
- 输液室课件教学课件
- 关于PedSQL-4.0儿童生存质量测定量表调查
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
评论
0/150
提交评论