解直角三角形的应用.doc_第1页
解直角三角形的应用.doc_第2页
解直角三角形的应用.doc_第3页
解直角三角形的应用.doc_第4页
解直角三角形的应用.doc_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题11倾斜的木板如图所示搭在货车上,货车的高度为2m,如果木板与地面所成的角为30,求木板的一端B与车的水平距离12海中有一小岛,它的周围8海里内有暗礁,轮船由西向东航行,在B点测得小岛在北偏东60方向上,航行10海里后到达C点,此时测得小岛在北偏东45方向上,如果不改变航向,继续向东航行,有无触礁的危险?13两建筑物AB和CD的水平距离为45m,从A点测得C点的俯角为30,测得D点的俯角为60,求建筑物CD的高度14某市一新开发的居民小区,每两幢楼之间距离为24m,每楼高均为18m已知该城市正午时分太阳高度最低时,太阳光线与水平线的夹角为30,试求: (1)此时前楼的影子落在后楼上有多高? (2)要使前楼的影子刚好落在后楼的楼脚时,两楼之间的距离应当是多少米?15如图,自卸车车厢的一个侧面为矩形ABCD,AB=3m,BC=0.5m,车厢底部距离地面1.2m,卸货时,车厢倾斜的角度为60,问此时车厢的最高点距离地面多少米(精确到1m)18(包头)中华人民共和国道路交通管理条例规定:“小汽车在城市街道上的行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m处有“车速检测仪O”,测得该车从北偏西60的A点行驶到北偏西30的B点,所用时间为1.5s (1)试求该车从A点到B点的平均速度;(2)试说明该车是否超过限速参考答案11在RtABC中,AC=2m,ABC=30,tanABC=,BC=2m12如图 过M作MNBC于N, 设MN=x,则CN=x, 在RtBMN中, tan30=,x=5(+1) 5(+1)8, 船继续向东航行无触礁危险13过C作CEAB于E 在RtADB中,BD=45m,ADB=60, AB=45(m) 在RtACE中,CE=45m,ACE=30, tanACE=,AE=15(m) CD=AB-AE=45-15=30(m)14如图 由ADB=30,AB=18m, BD=18m,CD=18-24(m) 又CDEBDA,CE=18-8(m) 故此楼落在后楼的影子高为(18-8)m (2)若影子恰好落在楼脚时,距离为x 则=,x=18(m) 故两楼之间的距离应当为18m15AB=CD=3m,DCF=60, DF=DCsin60=3=m 在RtADH中,ADH=30, AD=BC=0.5m AH=ADsin30,AH=m AG=+=(m) A距地面的距离为+,即4(m) 故此时车厢的最高点A距离地面4m18(1)在RtAOC中,AC=OCtanAOC=25tan60=25m, 在RtBOC中,BC=OCtanBOC=25tan30=m, AB=AC-BC=(m) 小汽车从A到B的速度为=(m/s) (2)70km/h=m/s, 又,小汽车没有超过限速例1. 如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得ABC=45o,ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。 解: 例2. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。 (1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案。具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用、表示)。 (2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。 解:(1)在A处放置测倾器,测得点H的仰角为 在B处放置测倾器,测得点H的仰角为 例3. 某一时刻,一架飞机在海面上空C点处观测到一人在海岸A点处钓鱼。从C点处测得A的俯角为45o;同一时刻,从A点处测得飞机在水中影子的俯角为60o。已知海岸的高度为4米,求此时钓鱼的人和飞机之间的距离(结果保留整数)。 解: 例7 如图1,在中,AD是BC边上的高,。(1)求证:ACBD(2)若,求AD的长。图1分析:由于AD是BC边上的高,则有和,这样可以充分利用锐角三角函数的概念使问题求解。解:(1)在中,有, 中,有(2)由;可设由勾股定理求得, 即例8. 如图2,已知中,求的面积(用的三角函数及m表示)图2分析:要求的面积,由图只需求出BC。解:由例9. 如图3,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工。从AC上的一点B,取米,。要使A、C、E成一直线,那么开挖点E离点D的距离是( )A. 米B. 米C. 米D. 米图3分析:在中可用三角函数求得DE长。解:A、C、E成一直线在中,米,米,故应选B。例10. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B为追上时的位置)(2)确定巡逻艇的追赶方向(精确到)(如图4)图4参考数据:分析:(1)由图可知是直角三角形,于是由勾股定理可求。(2)利用三角函数的概念即求。解:设需要t小时才能追上。则(1)在中,则(负值舍去)故需要1小时才能追上。(2)在中 即巡逻艇沿北偏东方向追赶。例11. 如图5,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺,测倾器。图5(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案,具体要求如下:测量数据尽可能少;在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用等表示,测倾器高度不计)。(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示)。分析:本题实际是一道图形设计和数据的测量计算,依题意可有几种方案。如测三个数据、测四个数据、测五个数据等。但又要使测得的数据尽可能少,于是以三个数据为例。解:如图5(1)测三个数据。(2)设在中, 在中,即 1. 测量底部不可以到达的物体的高度,可以按下列步骤进行:(如图所示,以测量MN的高度为例) 在测点A处安置测倾器,测得此时M的仰角。 在测点A与物体之间的B处安置测倾器(A、B与N在一条直线上),测得此时M的仰角。量出测倾器的高度,以及测点A、B之间的距离AB=b。(1)根据测量数据,你能求出物体MN的高度吗?说说你的理由。(2)若,试计算MN的高度。 2. 公路MN和公路PQ在点P处交汇,且,点A处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟? 3. 某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案。甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回。已知该公司租车从基地到公司的运输费为5000元。 (1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围。(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。 4. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元。已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水价格。参考答案 1. 解: 2. 解: 3. 解: 4. 解:设去年x元,今年元 答:今年用水价格2元。 关于坡角【例1】(2005年济南市)下图表示一山坡路的横截面,CM是一段平路,它高出水平地面24米,从A到B,从B到C是两段不同坡角的山坡路山坡路AB的路面长100米,它的坡角BAE=5,山坡路BC的坡角CBH=12为了方便交通,政府决定把山坡路BC的坡角降到与AB的坡角相同,使得DBI=5(精确到0.01米) (1)求山坡路AB的高度BE (2)降低坡度后,整个山坡的路面加长了多少米?(sin5=0.0872,cos5=0.9962,sin12=0.2079,cos12=0.9781)方位角.【例2】(2006年襄樊市)如图,MN表示襄樊至武汉的一段高速公路设计路线图,在点M测得点N在它的南偏东30的方向,测得另一点A在它的南偏东60的方向;取MN上另一点B,在点B测得点A在它的南偏东75的方向,以点A为圆心,500m为半径的圆形区域为某居民区,已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区?【点评】通过设未知数,利用函数定义建立方程来寻求问题的解决是解直角三角形应用中一种常用方法坡度【例3】(2005年辽宁省)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米(如图所示)求: (1)渠面宽EF; (2)修200米长的渠道需挖的土方数例8.如图7,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C点用测角器测得旗杆顶A点的仰角AFE=60,再沿直线CB后退8米到D点,在D点又用测角器测得旗杆顶A点的仰角AGE=45;已知测角器的高度是16米,求旗杆AB的高度(的近似值取17,结果保留小数)解:设AE为x米,在RtEF中,AFE=60, EF=x/3 在RtAGE中,AGE=45 AE=GE 8+x/3=x x=12+4 即x188(的近似值取17,结果保留小数)AB=AE+EB204答:旗杆高度约为204米例9.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c图(2)是以c为直角边的等腰直角三角形请你开动脑筋,将它们拼成一个能证明勾股定理的图形。 (1)画出拼成的这个图形的示意图,写出它是什么图形 (2)用这个图形证明勾股定理 (3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)解:(1)图形规范、正确 写出是直角梯形 (2)S梯形= (a-b)2 S梯形=ab- c2 (a-b)2=ab- c2 整理,得a2+b2=c2 (3)拼出能证明勾股定理的图形例10.下图表示一山坡路的横截面,CM是一段平路,它高出水平地面24米从A到B、从B到C是两段不同坡角的山坡路,山坡路AB的路面长100米,它的坡角BAE=5,山坡路BC的坡角CBH=12为了方便交通,政府决定把山坡路BC的坡角降到与AB的坡角相同,使得DBI=5(精确到0O1米) (1)求山坡路AB的高度BE (2)降低坡度后,整个山坡的路面加长了多少米? (sin5=00872,cos5=09962,sin12=02079,cos12=09781) 解:(1)在RtABE中,BE=872(米) (2)在RtCBH中,CH=CF-HF=1528BC=73497 在RtDBI中,DB=175229 DB-BC175229-73497=10173210173(米)3.40米5.00米ABCD4530六 某型号飞机的翼形状如图所示,根据图中数据计算AC、BD和 CD的长度(精确到0.1米) 简解:作BE垂直直线CD于E,在直角三角形BED中,有 CD5 tan30 5 5 2.89,作AF垂直直线CD于E,在直角三角形AFC中,ACFCAF45,所以有 CFAFBE5 ,则有 CD(CFFE )ED (CFAB )ED (51.3)2.89 3.4又,有AC AF5 51.414 7.1, BD2 ED22.89 5.8;所以CD,AC,BD 的长分别约为 3.4米,7.1米和5.8米 一、若直线l过O上某一点A,证明l是O的切线,只需连OA,证明OAl就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在ABC中,AB=AC,以AB为直径的O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与O相切.证明:连结OE,AD. AB是O的直径, ADBC. 又AB=BC, 3=4. BD=DE,1=2. 又OB=OE,OF=OF, BOFEOF(SAS). OBF=OEF. BF与O相切, OBBF. OEF=900. EF与O相切.说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与O相切.证明一:作直径AE,连结EC. AD是BAC的平分线, DAB=DAC. PA=PD, 2=1+DAC. 2=B+DAB, 1=B. 又B=E, 1=E AE是O的直径, ACEC,E+EAC=900. 1+EAC=900. 即OAPA.PA与O相切.证明二:延长AD交O于E,连结OA,OE. AD是BAC的平分线, BE=CE, OEBC. E+BDE=900. OA=OE, E=1. PA=PD, PAD=PDA. 又PDA=BDE, 1+PAD=900 即OAPA. PA与O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是O的直径,O交BC于D,DMAC于M求证:DM与O相切.证明一:连结OD. AB=AC, B=C.OB=OD,1=B. 1=C. ODAC.D DMAC,DMOD.DM与O相切证明二:连结OD,AD.AB是O的直径,ADBC.又AB=AC, 1=2. DMAC,2+4=900COA=OD,1=3.3+4=900.即ODDM.DM是O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4 如图,已知:AB是O的直径,点C在O上,且CAB=300,BD=OB,D在AB的延长线上.求证:DC是O的切线证明:连结OC、BC. OA=OC, A=1=300. BOC=A+1=600. 又OC=OB, OBC是等边三角形.D OB=BC. OB=BD, OB=BC=BD. OCCD. DC是O的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB是O的直径,CDAB,且OA2=ODOP.求证:PC是O的切线.证明:连结OC OA2=ODOP,OA=OC, OC2=ODOP, . 又1=1, OCPODC. OCP=ODC. CDAB, OCP=900. PC是O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与CFG的外接圆相切.分析:此题图上没有画出CFG的外接圆,但CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CEOC即可得解.证明:取FG中点O,连结OC. ABCD是正方形, BCCD,CFG是Rt O是FG的中点, O是RtCFG的外心. OC=OG, 3=G, ADBC, G=4. AD=CD,DE=DE, ADE=CDE=450, ADECDE(SAS) 4=1,1=3. 2+3=900, 1+2=900. 即CEOC. CE与CFG的外接圆相切二、若直线l与O没有已知的公共点,又要证明l是O的切线,只需作OAl,A为垂足,证明OA是O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,D与AB切于E点.求证:AC与D相切.证明一:连结DE,作DFAC,F是垂足. AB是D的切线, DEAB. DFAC, DEB=DFC=900. AB=AC, B=C. 又BD=CD, BDECDF(AAS) DF=DE. F在D上. AC是D的切线证明二:连结DE,AD,作DFAC,F是垂足.AB与D相切,DEAB.AB=AC,BD=CD,1=2.DEAB,DFAC,DE=DF.F在D上.AC与D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例8 已知:如图,AC,BD与O切于A、B,且ACBD,若COD=900.求证:CD是O的切线.证明一:连结OA,OB,作OECD,E为垂足. AC,BD与O相切, ACOA,BDOB. ACBD, 1+2+3+4=1800.O COD=900, 2+3=900,1+4=900. 4+5=900. 1=5. RtAOCRtBDO. . OA=OB, . 又CAO=COD=900, AOCODC, 1=2. 又OAAC,OECD, OE=OA. E点在O上. CD是O的切线.证明二:连结OA,OB,作OECD于E,延长DO交CA延长线于F.AC,BD与O相切,ACOA,BDOB.ACBD,F=BDO.又OA=OB,AOFBOD(AAS)OF=OD.COD=900,CF=CD,1=2.又OAAC,OECD,OE=OA.E点在O上.CD是O的切线.证明三:连结AO并延长,作OECD于E,取CD中点F,连结OF.AC与O相切,ACAO.ACBD,AOBD.BD与O相切于B,AO的延长线必经过点B.AB是O的直径.ACBD,OA=OB,CF=DF,OFAC,1=COF.COD=900,CF=DF,.2=COF.1=2.OAAC,OECD,OE=OA.E点在O上.CD是O的切线切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论: 经过圆心且垂直于切线的直线必经过切点切线的性质定理的推论: 经过切点且垂直于切线的直线必经过圆心切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径【例1】如图1,已知AB为O的直径,点D在AB的延长线上,BDOB,点C在圆上,CAB30求证:DC是O的切线思路:要想证明DC是O的切线,只要我们连接OC,证明OCD90即可图1OABCD证明:连接OC,BCAB为O的直径,ACB90CAB30,BCABOBBDOB,BCODOCD90DC是O的切线【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线OABCD图22341【例2】如图2,已知AB为O的直径,过点B作O的切线BC,连接OC,弦ADOC求证:CD是O的切线思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理欲证明CD是O的切线,只要证明ODC90即可证明:连接ODOCAD,13,24OAOD,1234又OBOD,OCOC,OBCODCOBCODCBC是O的切线,OBC90ODC90DC是O的切线【例3】如图2,已知AB为O的直径,C为O上一点,AD和过C点的切线互相垂直,垂足为D求证:AC平分DAB图3OABCD231思路:利用圆的切线的性质与圆的切线垂直于过切点的半径证明:连接OCCD是O的切线,OCCDADCD,OCAD12OCOA,1323AC平分DAB【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线【例4】 如图1,B、C是O上的点,线段AB经过圆心O,连接AC、BC,过点C作CDAB于D,ACD=2BAC是O的切线吗?为什么?解:AC是O的切线理由:连接OC,OC=OB,OCB=BCOD是BOC的外角,COD=OCB+B=2BACD=2B,ACD=CODCDAB 于D,DCO+COD=90DCO+ACD=90即OCACC为 O上的点,AC是O的切线【例5】 如图2,已知是ABC的外接圆,AB是的直径,D是AB的延长线上的一点,AEDC交DC的延长线于点E,且AC平分EAB求证:DE是O的切线证明:连接OC,则OA=OC, CAO=ACO,AC平分EAB,EAC=CAO=AC,AECO,又AEDE,CODE,DE是O的切线二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】 如图3,AB=AC,OB=OC,O与AB边相切于点D证明:连接OD,作OEAC,垂足为EAB=AC,OB=OCAO为BAC角平分线,DAO=EAOO与AB相切于点D,BDO=CEO=90AO=AOADOAEO,所以OE=ODOD是O的半径,OE是O的半径O与AC 边相切【例7】 如图,在ABC中,AB=AC,以AB为直径的O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与O相切.证明:连结OE,AD. AB是O的直径, ADBC. 又AB=BC, 3=4. BD=DE,1=2. 又OB=OE,OF=OF, BOFEOF(SAS). OBF=OEF. BF与O相切, OBBF. OEF=900. EF与O相切.说明:此题是通过证明三角形全等证明垂直的 【例8】如图,AD是BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与O相切.证明一:作直径AE,连结EC.AD是BAC的平分线, DAB=DAC. PA=PD, 2=1+DAC. 2=B+DAB, 1=B. 又B=E, 1=E AE是O的直径, ACEC,E+EAC=900. 1+EAC=900. 即OAPA. PA与O相切.证明二:延长AD交O于E,连结OA,OE. AD是BAC的平分线, BE=CE, OEBC. E+BDE=900. OA=OE, E=1. PA=PD, PAD=PDA. 又PDA=BDE, 1+PAD=900 即OAPA. PA与O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.【例9】如图,AB=AC,AB是O的直径,O交BC于D,DMAC于M求证:DM与O相切.证明一:连结OD. AB=AC, B=C.OB=OD,1=B. 1=C. ODAC.D DMAC,DMOD.DM与O相切证明二:连结OD,AD.AB是O的直径,ADBC.又AB=AC, 1=2. DMAC,2+4=900COA=OD,1=3.3+4=900.即ODDM.DM是O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】 如图,已知:AB是O的直径,点C在O上,且CAB=300,BD=OB,D在AB的延长线上.求证:DC是O的切线证明:连结OC、BC. OA=OC, A=1=300.BOC=A+1=600. 又OC=OB,OBC是等边三角形.DOB=BC.OB=BD, OB=BC=BD. OCCD. DC是O的切线.说明:此题解法颇多,但这种方法较好.【例12】 如图,AB是O的直径,CDAB,且OA2=ODOP.求证:PC是O的切线.证明:连结OC OA2=ODOP,OA=OC, OC2=ODOP, . 又1=1, OCPODC. OCP=ODC. CDAB, OCP=900. PC是O的切线.说明:此题是通过证三角形相似证明垂直的【例13】 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与CFG的外接圆相切.分析:此题图上没有画出CFG的外接圆,但CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CEOC即可得解.证明:取FG中点O,连结OC. ABCD是正方形, BCCD,CFG是Rt O是FG的中点, O是RtCFG的外心. OC=OG, 3=G, ADBC, G=4. AD=CD,DE=DE, ADE=CDE=450, ADECDE(SAS) 4=1,1=3. 2+3=900, 1+2=900. 即CEOC. CE与CFG的外接圆相切二、若直线l与O没有已知的公共点,又要证明l是O的切线,只需作OAl,A为垂足,证明OA是O的半径就行了,简称:“作垂直;证半径”【例14】 如图,AB=AC,D为BC中点,D与AB切于E点.求证:AC与D相切.证明一:连结DE,作DFAC,F是垂足. AB是D的切线, DEAB. DFAC, DEB=DFC=900. AB=AC, B=C. 又BD=CD, BDECDF(AAS) DF=DE. F在D上. AC是D的切线证明二:连结DE,AD,作DFAC,F是垂足.AB与D相切,DEAB.AB=AC,BD=CD,1=2.DEAB,DFAC,DE=DF.F在D上.AC与D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.【例15】 已知:如图,AC,BD与O切于A、B,且ACBD,若COD=900.求证:CD是O的切线.证明:连结OA,OB,作OECD于E,延长DO交CA延长线于F.AC,BD与O相切,ACOA,BDOB.ACBD,F=BDO.又OA=OB,AOFBOD(AAS)OF=OD.COD=900,CF=CD,1=2.又OAAC,OECD,OE=OA.E点在O上.CD是O的切线.典型例题例1、如图,ABC内接于大O,BC,小O与AB相切于点D求证:AC是小圆的切线分析 AC与小O的公共点没有确定,故应过O作AC的垂线段OE再证明OE等于小圆半径,用“到圆心的距离等于半径的直线是圆的切线”来判定AC是小圆的切线证明 连结OD,作OEAC于EBC,AB=AC又AB与O小相切于D,ODABOEAC,OD=OE即小O的圆心O到AC的距离等于半径,所以AC是小圆的切线说明:(1)本题为证明切线的两个常见方法(连半径证垂直;作垂直证半径)之一;(2)本题为基本题型,但应用到切线的性质和判定;(3)本题为教材110页例4的变形题例2、(大连市,l 999)阅读:“如图ABC内接于O,CAE=B求证:AE与O相切于点A证明:作直径AF,连结FC,则ACF90 AFC+CAF90 BAFC B+CAF90 又 CAE=B, CAE+CAF90 即AE与O相切于点A问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用)如图,已知ABC 内接于OP是CB延长线上一点,连结AP且PA2PBPC求证:PA是O的切线证明:PA2PBPC, 又 P=P,PABPCAPAB=C由阅读题的结论可知,PA是O的切线说明:(1)此题的阅读材料来源于教材第117页B组第1题;(2)应用“连半径证垂直”证明切线例3、(西宁,1999)已知:如图,RtABC中,C=90,以AB为直径的O交斜边AB于E,ODAB求证:(1)ED是O的切线;(2)2 DE2BEOD证明:(1)连结OE、CE,则CEAB在RtABC中,OA=OC,ODAB,D为BC的中点,DE=CD,又OC=OE,OD=OD,CODEOD,OED=OCD=90,ED是O的切线(2)在RtABC中,CEAB,CBEABC,CB2BEAB,OD为ABC的中位线,AB=2OD,BC=2ED,(2ED)2BE2OD即2DE2BEOD说明:此题为综合题,主要应用切线的性质定理、判定定理、射影定理、中位线定理等知识圆切线问题典型问题例1. 已知半径为3的O上一点P和圆外一点Q,如果OQ5,PQ4,则PQ和圆的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论