




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、已知函数(I)设,求的单调区间;(II)设在区间(2,3)上有一个极值点,求的取值范围.(1)解:()当a=2时,当时在单调增加;当时在单调减少;当时在单调增加;综上所述,的单调递增区间是和,的单调递减区间是(),当时,为增函数,故无极值点;当时,有两个根 由题意知,式无解,式的解为, 因此的取值范围是.2、 设函数,求函数的单调区间与极值.(2)解:3、已知函数(其中常数a,bR),是奇函数.()求的表达式;()讨论的单调性,并求在区间1,2上的最大值和最小值.(3)解:4、已知函数f(x)(a)(xb)(a,bR,ab)()当a1,b2时,求曲线yf(x)在点(2,f(2)处的切线方程;()设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3x1,x3x2 证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4(4)解:()解:当a=1,b=2时,因为(x)=(x-1)(3x-5)故(2)=1又f(2)0,所以f(x)在点(2,0)处的切线方程为yx2 ()证明:因为(x)3(xa)(x),由于ab故a0. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围.(8)解:()解:当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()解:f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:(1) 若,当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-f(x)极大值 当等价于 解不等式组得-5a2,则.当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-0+f(x)极大值极小值当时,f(x)0等价于即解不等式组得或.因此2a5. 综合(1)和(2),可知a的取值范围为0a1()讨论f(x)的单调性;()若当x0时,f(x)0恒成立,求a的取值范围。w.w.w.k.s.5.u.c.o.m (9)解: (I) 由知,当时,故在区间是增函数; 当时,故在区间是减函数; 当时,故在区间是增函数。 综上,当时,在区间和是增函数,在区间是减函数。 (II)由(I)知,当时,在或处取得最小值。 由假设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 6877:2025 EN Dentistry - Endodontic obturating materials
- 【正版授权】 ISO 22504:2025 EN Oil and gas industries including lower carbon energy - Pipeline transportation systems - Onshore and offshore pipelines pig traps design requirements
- 液温考试试题及答案
- 莆田哲理考试题及答案
- 机车制动试题及答案
- 校园安全知识培训课件图片
- 神经阻滞考试题及答案
- 安永税务面试题及答案
- 高一语文期末考试题及答案
- 押运员实体考试试题及答案
- GB/T 45411.1-2025光学和光子学瞄准望远镜规范第1部分:普通性能仪器
- 外销出口流程培训
- 房屋建筑工程竣工验收技术资料统一用表(2024 版)
- 《企业研发费用税前加计扣除政策解读与应用课件》
- 《马斯克英文介绍》课件
- OptiStruct结构分析与工程应用
- GA/T 1280-2024银行自助设备安全性规范
- 带状疱疹后神经痛的诊治课件
- 火灾地震逃生演练课件
- 广东省深圳市2024-2025学年高一上学期期中考试数学试卷(含答案)
- 第6讲立体几何(2022-2023年高考真题)(原卷版)
评论
0/150
提交评论