《电路分析讲义》PPT课件.ppt_第1页
《电路分析讲义》PPT课件.ppt_第2页
《电路分析讲义》PPT课件.ppt_第3页
《电路分析讲义》PPT课件.ppt_第4页
《电路分析讲义》PPT课件.ppt_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第9章正弦稳态电路的分析 2 正弦稳态电路的分析 3 正弦稳态电路的功率分析 重点 1 阻抗和导纳 4 串 并联谐振的概念 2 9 1阻抗和导纳 1 阻抗 正弦稳态情况下 单位 阻抗模 阻抗角 欧姆定律的相量形式 3 当无源网络内为单个元件时有 Z可以是实数 也可以是虚数 4 2 RLC串联电路 由KVL 5 Z 复阻抗 R 电阻 阻抗的实部 X 电抗 阻抗的虚部 Z 复阻抗的模 z 阻抗角 转换关系 或 阻抗三角形 6 分析R L C串联电路得出 1 Z R j wL 1 wC Z jz为复数 故称复阻抗 2 wL 1 wC X 0 jz 0 电路为感性 电压领先电流 相量图 选电流为参考向量 三角形UR UX U称为电压三角形 它和阻抗三角形相似 即 7 wL 1 wC X 0 jz 0 电路为容性 电压落后电流 wL 1 wC X 0 jz 0 电路为电阻性 电压与电流同相 8 例 已知 R 15 L 0 3mH C 0 2 F 求i uR uL uC 解 其相量模型为 9 则 UL 8 42 U 5 分电压大于总电压 相量图 注 10 3 导纳 正弦稳态情况下 单位 S 导纳模 导纳角 11 对同一二端网络 当无源网络内为单个元件时有 Y可以是实数 也可以是虚数 12 4 RLC并联电路 由KCL 13 Y 复导纳 G 电导 导纳的实部 B 电纳 导纳的虚部 Y 复导纳的模 y 导纳角 转换关系 或 导纳三角形 14 1 Y G j wC 1 wL Y jy数 故称复导纳 2 wC 1 wL B 0 y 0 电路为容性 电流超前电压 相量图 选电压为参考向量 分析R L C并联电路得出 三角形IR IB I称为电流三角形 它和导纳三角形相似 即 RLC并联电路同样会出现分电流大于总电流的现象 15 wC 1 wL B 0 y 0 电路为感性 电流落后电压 16 wC 1 wL B 0 jy 0 电路为电阻性 电流与电压同相 17 5 复阻抗和复导纳的等效互换 一般情况G 1 RB 1 X 若Z为感性 X 0 则B 0 即仍为感性 注 18 同样 若由Y变为Z 则有 19 例 RL串联电路如图 求在 106rad s时的等效并联电路 解 RL串联电路的阻抗为 20 9 2阻抗 导纳 的串联和并联 1 阻抗的串联 21 2 导纳的并联 两个阻抗Z1 Z2的并联等效阻抗为 22 例 求图示电路的等效阻抗 105rad s 解 感抗和容抗为 23 例 图示电路对外呈现感性还是容性 解1 等效阻抗为 24 解2 用相量图求解 取电流I2为参考相量 25 例 图示为RC选频网络 试求u1和u0同相位的条件及 解 设 Z1 R jXC Z2 R jXC 26 9 3正弦稳态电路的分析 电阻电路与正弦电流电路的分析比较 可见 二者依据的电路定律是相似的 只要作出正弦电流电路的相量模型 便可将电阻电路的分析方法推广应用于正弦稳态的相量分析中 27 结论 1 引入相量法 把求正弦稳态电路微分方程的特解问题转化为求解复数代数方程问题 2 引入电路的相量模型 不必列写时域微分方程 而直接列写相量形式的代数方程 3 引入阻抗以后 可将所有网络定理和方法都应用于交流 直流 f 0 是一个特例 28 例1 画出电路的相量模型 解 29 30 列写电路的回路电流方程和节点电压方程 例2 解 回路法 31 节点法 32 方法一 电源变换 解 例3 33 方法二 戴维南等效变换 求开路电压 求等效电阻 34 例4 求图示电路的戴维南等效电路 解 求短路电流 35 例5 用叠加定理计算电流 36 解 37 38 已知平衡电桥Z1 R1 Z2 R2 Z3 R3 jwL3 求 Zx Rx jwLx 平衡条件 Z1Z3 Z2Zx得 R1 R3 jwL3 R2 Rx jwLx Rx R1R3 R2 Lx L3R1 R2 例6 解 Z1 1 Z3 3 Z2 2 Zx x Z1 Z3 Z2 Zx 1 3 2 x 39 已知 Z 10 j50W Z1 400 j1000W 例7 解 40 已知 U 115V U1 55 4V U2 80V R1 32W f 50Hz求 线圈的电阻R2和电感L2 方法 画相量图分析 例8 解 41 方法二 其余步骤同解法一 42 用相量图分析 例9 移相桥电路 当R2由0 时 解 当R2 0 q 180 当R2 q 0 a b b 43 例10 图示电路 解 用相量图分析 44 例11 求RL串联电路在正弦输入下的零状态响应 解 应用三要素法 用相量法求正弦稳态解 过渡过程与接入时刻有关 45 直接进入稳定状态 46 出现瞬时电流大于稳态电流现象 47 9 5正弦稳态电路的功率 无源一端口网络吸收的功率 u i关联 1 瞬时功率 instantaneouspower 第一种分解方法 第二种分解方法 48 第一种分解方法 p有时为正 有时为负 p 0 电路吸收功率 p 0 电路发出功率 UIcos 恒定分量 UIcos 2 t 为正弦分量 49 第二种分解方法 UIcos 1 cos2 t 为不可逆分量 UIsin sin2 t为可逆分量 能量在电源和一端口之间来回交换 50 2 平均功率 averagepower P u i 功率因数角 对无源网络 为其等效阻抗的阻抗角 cos 功率因数 P的单位 W 瓦 51 一般地 有0 cos 1 X 0 j 0 感性 X 0 j 0 容性 cosj 0 5 感性 则j 60o 电压领先电流60o 平均功率实际上是电阻消耗的功率 亦称为有功功率 表示电路实际消耗的功率 它不仅与电压电流有效值有关 而且与cos 有关 这是交流和直流的很大区别 主要由于电压 电流存在相位差 例 52 4 视在功率S 反映电气设备的容量 3 无功功率 reactivepower Q 单位 var 乏 Q 0 表示网络吸收无功功率 Q 0 表示网络发出无功功率 Q的大小反映网络与外电路交换功率的大小 是由储能元件L C的性质决定的 53 有功 无功 视在功率的关系 有功功率 P UIcosj单位 W 无功功率 Q UIsinj单位 var 视在功率 S UI单位 VA 功率三角形 54 5 R L C元件的有功功率和无功功率 PR UIcos UIcos0 UI I2R U2 RQR UIsin UIsin0 0 PL UIcos UIcos90 0QL UIsin UIsin90 UI I2XL PC UIcos UIcos 90 0QC UIsin UIsin 90 UI I2XC 55 任意阻抗的功率计算 PZ UIcos I2 Z cos I2R QZ UIsin I2 Z sin I2X I2 XL XC QL QC 发出无功 56 电感 电容的无功补偿作用 当L发出功率时 C刚好吸收功率 则与外电路交换功率为pL pC 因此 L C的无功具有互相补偿的作用 57 电压 电流的有功分量和无功分量 以感性负载为例 58 59 反映电源和负载之间交换能量的速率 无功的物理意义 例 60 交流电路功率的测量 单相功率表原理 电流线圈中通电流i1 i 电压线圈串一大电阻R R L 后 加上电压u 则电压线圈中的电流近似为i2 u R 61 指针偏转角度 由M确定 与P成正比 由偏转角 校准后 即可测量平均功率P 使用功率表应注意 1 同名端 在负载u i关联方向下 电流i从电流线圈 号端流入 电压u正端接电压线圈 号端 此时P表示负载吸收的功率 2 量程 P的量程 U的量程 I的量程 cos 表的 测量时 P U I均不能超量程 62 例 三表法测线圈参数 已知f 50Hz 且测得U 50V I 1A P 30W 解 方法一 63 方法二 又 方法三 64 已知 电动机PD 1000W U 220 f 50Hz C 30 F 求负载电路的功率因数 例 解 65 6 功率因数提高 设备容量S 额定 向负载送多少有功要由负载的阻抗角决定 P UIcos Scosj cosj 1 P S 75kW cosj 0 7 P 0 7S 52 5kW 一般用户 异步电机空载cosj 0 2 0 3满载cosj 0 7 0 85 日光灯cosj 0 45 0 6 1 设备不能充分利用 电流到了额定值 但功率容量还有 功率因数低带来的问题 66 2 当输出相同的有功功率时 线路上电流大 I P Ucos 线路压降损耗大 解决办法 1 高压传输 2 改进自身设备 3 并联电容 提高功率因数 67 分析 并联电容后 原负载的电压和电流不变 吸收的有功功率和无功功率不变 即 负载的工作状态不变 但电路的功率因数提高了 特点 68 并联电容的确定 69 并联电容也可以用功率三角形确定 从功率这个角度来看 并联电容后 电源向负载输送的有功UILcos 1 UIcos 2不变 但是电源向负载输送的无功UIsin 2 UILsin 1减少了 减少的这部分无功就由电容 产生 来补偿 使感性负载吸收的无功不变 而功率因数得到改善 70 已知 f 50Hz U 220V P 10kW cosj1 0 6 要使功率因数提高到0 9 求并联电容C 并联前后电路的总电流各为多大 例 解 未并电容时 并联电容后 71 若要使功率因数从0 9再提高到0 95 试问还应增加多少并联电容 此时电路的总电流是多大 解 显然功率因数提高后 线路上总电流减少 但继续提高功率因数所需电容很大 增加成本 总电流减小却不明显 因此一般将功率因数提高到0 9即可 72 2 能否用串联电容的方法来提高功率因数cosj 思考题 1 是否并联电容越大 功率因数越高 73 9 6复功率 1 复功率 定义 复功率也可表示为 74 3 复功率满足守恒定理 在正弦稳态下 任一电路的所有支路吸收的复功率之和为零 即 2 结论 1 是复数 而不是相量 它不对应任意正弦量 2 把P Q S联系在一起它的实部是平均功率 虚部是无功功率 模是视在功率 75 电路如图 求各支路的复功率 例 解一 76 解二 77 9 7最大功率传输 Zi Ri jXi ZL RL jXL 78 讨论正弦电流电路中负载获得最大功率Pmax的条件 1 ZL RL jXL可任意改变 a 先设RL不变 XL改变 显然 当Xi XL 0 即XL Xi时 P获得最大值 b 再讨论RL改变时 P的最大值 当RL Ri时 P获得最大值 综合 a b 可得负载上获得最大功率的条件是 ZL Zi 最佳匹配 79 2 若ZL RL jXL只允许XL改变 获得最大功率的条件是 Xi XL 0 即XL Xi 最大功率为 3 若ZL RL为纯电阻 负载获得的功率为 电路中的电流为 模匹配 80 电路如图 求 1 RL 5 时其消耗的功率 2 RL 能获得最大功率 并求最大功率 3 在RL两端并联一电容 问RL和C为多大时能与内阻抗最佳匹配 并求最大功率 例 解 81 82 电路如图 求ZL 时能获得最大功率 并求最大功率 例 解 83 9 8串联电路的谐振 一 谐振 对于某无源一端口 如果同时存在L C时 当存在某一特定角频率时 使得端口电压与端口电流同相 则称该电路发生了谐振 这一特定频率又名谐振频率 84 阻抗的轨迹见 P210 的图9 17的 c 图 阻抗的虚部X的随的变化曲线见图9 17的 b 图 二 串联电路的输入阻抗 85 谐振角频率 1 串联谐振的条件 端口电压和端口电流同相位 谐振也可能出现在某条支路 也可能出现在某个电路中 三 串联谐振有关的概念 可见 谐振频率及谐振角频率与电感L及电容C有关 与电阻R无关 谐振频率 86 品质因数Q越大 选择性越好 形状越尖锐 对非谐振频率有较强的抑制性 计算式 由定义式推导得 定义 2 串联谐振品质因数 区别电感与电容吸收的无功功率的符号 87 四 实验辨别串联谐振的依据 输入阻抗最小 输入导纳最大 电压不变时 电流与电阻电压最大 一小二大 即 电流随频率的关系见 P211 的图9 18 a 谐振时的电路相量图见 P211 图9 18 b 所示 1 电压特性 五 串联谐振的特点 电压谐振 88 可见 电阻R不影响谐振频率 但影响电感和电容上的电压 当Q 1时 电感和电容上出现过电压 因而电力系统不允许谐振 但电子选频用的是谐振特性 89 1 功率 2 功率和能量特性 串联谐振的特点 L与C的两端相当于短路 90 谐振时 电路只向外吸收有功功率 不吸收无功功率 但电感吸收无功功率 电容发出无功功率 电感和电容之间进行周期性的磁场能量和电场能量的交换 品质因数Q与功率的关系 且电感和电容吸收的总能量与串联谐振电路吸收的有功功率之比为 2 能量 电感和电容的总能量为两者贮存的能量之和 由下式可见 两者吸收的能量的总和为一常量 自己看 不讲 将电压电流代入能量计算公式即可 91 谐振曲线 等随频率变化的曲线称为谐振曲线 频率特性 频率响应 等随频率变化的特性称为频率特性 或频率响应 3 频率特性 分贝表示 比值表示 频率特性的表示方法 92 谐振曲线可见 当Q值越大 选择性越好 如 P214 图9 19 在作题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论