




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欢迎下载本文档参考使用,如果有疑问或者需要CAD图纸的请联系q1484406321编号无锡太湖学院毕业设计(论文)相关资料题目: EG-6203四通道超声波轴承 清洗机送料机构设计 信机 系 机械工程及自动化专业学 号: 0923242学生姓名: 马佳富 指导教师: 范圣耀 (职称:副教授) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: EG-6203四通道超声波轴承 清洗机送料机构设计 信机 系 机械工程及自动化 专业学 号: 0923242 学生姓名: 马佳富 指导教师: 范圣耀 (职称:副教授) (职称: )2012年11月25日 课题来源由于我在一家轴承制造厂家进行实习,在轴承的清洗过程中涉及到轴承的清洗,而轴承的清洗机在市场上有很多种,本人实习的公司用的是先进的超声波轴承清洗机,所以我就选取超声波轴承清洗机上的一个机构送料机构进行设计。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义超声波清洗(简称超声清洗)是将超声波的振动加人到洗涤液中用以清洗固体表面的方法。现在,超声清洗以其独特的清洗效果泛地应用于机械、电子、电脑、轻工、医疗、化工、五金、仪表、电镀等行业。在市场经济的环境下,对产品质量要求越来越高。为保证产品质量,许多企业在产品生产过程中,将采用清洗工艺来提高产品质量,为企业创造良好的经济效益。当前在一些工业产品生产过程中,应用超声波清洗是一种洗净效果好,价格经济,有利于环保的清洗工艺。超声波清洗机可以应用于清洗各式各样体形大小,形状复杂,清洁度要求高的许多工件。(2)超声波轴承清洗机的研究状况及其发展前景轴承在当今的国民生产的应用是非常广泛的。中国是轴承生产大国,清洗是轴承的合套后的一道重要的工序。清洗的好坏决定了轴承的合格率。轴承的内外圈在加工打磨之后就产生了细小的颗粒和磁性。在自动化之前,直至现在一些小厂还沿用独立的退磁机去磁然后用机械式的液体压力清洗。这样大大浪费劳动力和减少工作效率。在超声波的出现后,现在采用的超声波清洗,由发生器输出超音频振荡电功率,经换能器将电功率换成超声机械振动,清洗液在超声振动下,产生具有数千万个大气压的微核波,形成液面与被清洗面间的高速核气流,使粘附被清洗件表面的各类污物剥落使产品合格率大大提升,同时提高效率,减少劳动力。以下是超声波清洗技术的具体应用范围:(1) 机械行业:防锈油脂的去除;量具的清洗;机械零部件的除油除锈;发动机、化油器及汽车零件的清洗;过滤器、滤网的疏通清洗等。 (2) 表面处理行业:电镀前的除油除锈;离子镀前清洗;磷化处理;清除积炭;清除氧化皮;清除抛光膏;金属工件表面活化处理等。 (3) 仪器仪表行业:精密零件的高清洁度装配前的清洗等。 (4) 电子行业:印刷线路板除松香、焊斑;高压触点等机械电子零件的清洗等。 (5) 医疗行业:医疗器械的清洗、消毒、杀菌、实验器皿的清洗等。 (6) 半导体行业:半导体晶片的高清洁度清洗。 (7) 钟表首、饰行业:清除油泥、灰尘、氧化层、抛光膏等。 (8) 化学、生物行业:实验器皿的清洗、除垢。研究内容 熟悉超声波清洗技术的发展历程,特别是近十几年来提出的对于轴承进行的全自动的清洗技术。 熟练掌握超声波清洗设备的分类,超声波清洗时的工艺流程以及相关的要求; 了解超声波清洗机的内部主要器件及其作用; 掌握超声波送料机构上的各个零件的大小、受力情况,使其能够在安全系数内安全工作; 对PLC技术在超声波清洗装备中的应用,使设备能够进行全自动清洗。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案将超声波清洗机分成几个主要组成部分,对每个部分块进行介绍分析;对送料机构进行受力分析及校核;对校核后的轴取合适的直径,在最经济的条件下,轴能在安全系数的条件下安全工作;对自动送料机构进行plc设计。 (2)研究方法 在理想的工作条件下,分析轴的受力情况,绘制轴的矩形图。 在理想的工作条件下,对轴上各个零件进行受力分析,选取合适的零件。研究计划及预期成果研究计划:2012年10月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:送料机构的设计。2013年4月12日-2013年4月25日:plc的设计。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:了解超声波清洗技术的发展历程,熟练掌握超声波清洗设备的分类,超声波清洗时的工艺流程以及相关的要求;了解超声波清洗机的内部主要器件及其作用;掌握超声波清洗机内部相关器件的结构、工作原理和注意条件;对超声波清洗机的总的电路图有所了解;掌握超声波送料机构上的各个零件的大小、受力情况;使其能够在安全系数内安全工作对PLC技术在超声波清洗装备中的应用,使设备能够进行全自动清洗。特色或创新之处PLC技术在超声波清洗装备中的应用,使设备能够进行全自动清洗。 采用固定某些参量、改变某些参量来研究问题的方法,思路清晰,简洁明了,行之有效。已具备的条件和尚需解决的问题 实验方案思路已经非常明确,通过对送料机构中轴的设计,选取合适的轴承、齿轮以及其他安装在轴上的零件。对轴上的润滑尚未讨论分析。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日 无 锡 太 湖 学 院 毕业设计(论文)外文资料翻译院 (系): 信 机 系 专 业: 机械工程及自动化 班 级: 机械95班 姓 名: 马佳富 学 号: 0923242 外文出处: 中国期刊网 附 件: 译文;原文;评分表 2013年 5 月Fundamentals of Mechanical Design And TheoryMechanical design means the design of things and systems of a mechanical naturemachines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences. The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end? Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, of a sensing that something is not right. The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variations in package weight, and by slight but perceptible variations in the quality of the packaging or wrap. There is a distinct difference between the statement of the need and the identification of the problem. Which follows this statement? The problem is more specific. If the need is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts. Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics of the space the thing must occupy and all the limitations on these quantities. We can regard the thing to be designed as something in a black box. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and the reliability. There are many implied specifications which result either from the designers particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designers freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications. After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications. The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract models of the system which will admit some form of mathematical analysis. We call these models mathematical models. In creating them it is our hope that we can find one which will simulate the real physical system very well. Evaluation is a significant phase of the total design process. Evaluation is the final proof of a successful design, which usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the need or needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and adjusted? Can a profit be made from its sale or use? Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted. Basically, there are only three means of communication available to us. There are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, no one will ever know how competent that person is! The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the find analysis, the real failure would lie in deciding not to make the presentation at all. Introduction to Machine Design Machine design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product. People who perform the various functions of machine design are typically called designers, or design engineers. Machine design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes. As stated previously, the purpose of machine design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a particular product is designed. Machine design should be considered to be an opportunity to use innovative talents to envision a design of a product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts or equations which alone can be used to provide all the correct decisions to produce a good design. On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function. Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that is the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what new, untried ideas should be incorporated. New designs generally have “bugs” or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasized that if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change. During the beginning stages of design, creativity should be allowed to flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the design which ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise. Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum. Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Initially the designer must communicate a preliminary design to get management approval. This is usually done by verbal discussions in conjunction with drawing layouts and written material. To communicate effectively, the following questions must be answered: (1) Does the design really serve a human need? (2) Will it be competitive with existing products of rival companies? (3) Is it economical to produce? (4) Can it be readily maintained? (5) Will it sell and make a profit? Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings. Quite often, a problem well occur during the manufacturing cycle. It may be that a change is required in the dimensioning or telegramming of a part so that it can be more readily produced. This falls in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way. Machining Turning The engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered. The engine lathe has been replaced in todays production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish and accuracy, are now at the designers fingertips with production speeds on a par with the fastest processing equipment on the scene today. Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used. Turret Lathes Production machining equipment must be evaluated now, more than ever before, in terms of ability to repeat accurately and rapidly. Applying this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating. In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turret lathe, the designer should strive for a minimum of operations. Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic to set up on the turret lathe than on the automatic screw machine. Quantities less than 1000 parts may be more economical to set up on the turret lathe than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities. Automatic Tracer Lathes Since surface roughness depends greatly upon material turned, tooling, and fees and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances. Is some case, tolerances of 0.05mm are held in continuous production using but one cut. Groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of 0.125mm is economical on both diameter and length of turn. Milling With the exceptions of turning and drilling, milling is undoubtedly the most widely used method of removing metal. Well suited and readily adapted to the economical production of any quantity of parts, the almost unlimited versatility of the milling process merits the attention and consideration of designers seriously concerned with the manufacture of t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市市场场地租赁合同附件一4篇
- 约定婚前财产婚后收益协议2篇
- 气候协议执行机制-洞察及研究
- 统编版2025-2026学年三年级上册期末学业水平测试卷(含答案)
- 部队交通安全培训计划表课件
- 河南省驻马店市汝南县一中二中三中联考2024-2025学年八年级下学期3月月考生物试题(含答案)
- 部门安全培训汇报课件
- 迁徙动物导航分子基础-洞察及研究
- 国际标准与区域监管冲突下的人造宝石出口合规性思考
- 四氟苯甲酸衍生物在极端工况下的热稳定性与结构演变关系研究
- 2025年FSC认证原材料采购合同范本
- 2025年8月广东深圳市光明区住房和建设局招聘一般专干5人备考练习题库及答案解析
- 中康科技腾讯健康:2024年消费者健康洞察呼吸系列报告-鼻炎鼻窦炎篇预览版
- 《煤矿安全规程(2025)》防治水新旧条文对照
- 2025年IT技术支持工程师招聘面试问题及答案解析
- GB 16807-2025防火膨胀密封件
- 挤压模具工特殊工艺考核试卷及答案
- 2025-2026学年外研版八年级英语上册教学计划及进度表
- 麻醉医生进修汇报课件
- (2025年标准)灵活用工协议书
- 发廊租工位合同协议模板
评论
0/150
提交评论