2018年高中数学_第四章 导数应用 4.1.1 导数与函数的单调性课件7 北师大版选修1-1_第1页
2018年高中数学_第四章 导数应用 4.1.1 导数与函数的单调性课件7 北师大版选修1-1_第2页
2018年高中数学_第四章 导数应用 4.1.1 导数与函数的单调性课件7 北师大版选修1-1_第3页
2018年高中数学_第四章 导数应用 4.1.1 导数与函数的单调性课件7 北师大版选修1-1_第4页
2018年高中数学_第四章 导数应用 4.1.1 导数与函数的单调性课件7 北师大版选修1-1_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数与函数的单调性 1 图像法 函数y x2 4x 3的图象 2 递增区间 递减区间 如何确定函数y x2 4x 3的单调性 2 作差f x1 f x2 并变形 2 由定义证明函数的单调性的一般步骤 1 设x1 x2是给定区间的任意两个值 且x1 x2 3 判断差的符号 与 比较 从而得函数的单调性 2 定义法 是否有更为简捷的方法呢 2 观察函数y x2 4x 3的图象上的点的切线 总结 该函数在区间 2 上递减 切线斜率小于0 即其导数为负 在区间 2 上递增 切线斜率大于0 即其导数为正 而当x 2时其切线斜率为0 即导数为0 函数在该点单调性发生改变 如果在某区间上f x 0 则f x 为该区间上增函数 如果在某区间上f x 0 则f x 为该区间上减函数 上面是否可得下面一般性的结论 一般地 设函数y f x 在某个区间内可导 则函数在该区间有下面的结论 如果在某区间上f x 0 则f x 为该区间上的增函数 如果在某区间上f x 0 则f x 为该区间上的减函数 导数法求函数的单调区间 例1 讨论函数y x2 4x 3的单调性 方法3 导数法 解 函数的定义域为R f x 2x 4 令f x 0 解得x 2 则f x 的单增区间为 2 再令f x 0 解得x 2 则f x 的单减区间 2 练习 讨论下列函数的单调性 1 y x x2 2 y x3 x2 总结 根据导数确定函数的单调性 1 确定函数f x 的定义域 2 求出函数的导数 3 解不等式f x 0 得函数单增区间 解不等式f x 0 得函数单减区间 问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论