




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 充分条件和必要条件 教学目标 知识目标 1 正确理解充分条件 必要条件 充要条件三个概念 2 能利用充分条件 必要条件 充要条件三个概念 熟练判断四种命题间的关系 3 在理解定义的基础上 可以自觉地对定义进行转化 转化成推理关系及集合的包含关系 二 能力目标 1 培养学生的观察与类比能力 会观察 通过大量的问题 会观察其共性及个性 2 培养学生的归纳能力 敢归纳 敢于对一些事例 观察后进行归纳 总结出一般规律 3 培养学生的建构能力 善建构 通过反复的观察分析和类比 对归纳出的结论 建构于自己的知识体系中 三 情感目标 通过以学生为主体的教学方法 让学生自己构造数学命题 发展体验获取知识的感受 通过对命题的四种形式及充分条件 必要条件的相对性 培养同学们的辩证唯物主义观点 3 通过 会观察 敢归纳 善建构 培养学生自主学习 勇于创新 多方位审视问题的创造技巧 敢于把错误的思维过程及弱点暴露出来 并在问题面前表现出浓厚的兴趣和不畏困难 勇于进取的精神 教学重点 构建充分条件 必要条件的数学意义 教学难点 命题条件的充分性 必要性的判断 1 命题 可以判断真假的陈述句 可写成 若p则q 2 四种命题及相互关系 一 复习引入 小结 作业 复习 新课 注 两个命题互为逆否命题 它们有相同的真假性 一 复习引入 小结 作业 复习 新课 3 例 判断下列命题的真假 1 若x a2 b2 则x 2ab 2 若ab 0 则a 0 2 因为若ab 0则应该有a 0或b 0 所以并不能得到a一定为0 真命题 假命题 解 1 因为若x a2 b2 而a2 b22ab 所以可以得到x 2ab 一 复习引入 小结 作业 复习 新课 4 例 将 1 改写成 若p 则q 的形式并判断下列命题的真假及其逆命题的真假 1 有两角相等的三角形是等腰三角形 2 若a2 b2 则a b 解 1 原命题 若一个三角形有两个角相等 则这个三角形是等腰三角形 2 原命题 若a2 b2 则a b 逆命题 若一个三角形是等腰三角形 则这个三角形有两个角相等 逆命题 若a b 则a2 b2 真命题 真命题 假命题 假命题 二 新课 小结 作业 新课 复习 练习1用符号与填空 1 x2 y2x y 2 内错角相等两直线平行 3 整数a能被6整除a的个位数字为偶数 4 ac bca b 新授课 1 充分条件与必要条件 一般地 若P 则q 为真命题 是指由p通过推理可以得到q 即 那么叫做的充分条件 叫做的必要条件 则称 是的充分条件 是的必要条件 P足以导致q 也就是说条件p充分了 q是p成立所必须具备的前提 二 新课 复习 小结 作业 新课 B A A B A B A B B A A 总结规律 A x x满足条件p B x x满足条件q 二 新课 例1 下列 若p 则q 形式的命题中 哪些命题中的p是q的充分条件 1 若x 1 则x2 4x 3 0 2 若f x x 则f x 为增函数 3 若x为无理数 则x2为无理数 解 命题 1 2 是真命题 命题 3 是假命题 所以命题 1 2 中的p是q的充分条件 复习 小结 作业 新课 二 新课 练习2下列 若p 则q 形式的命题中 哪些命题中的p是q的充分条件 复习 小结 作业 新课 1 若两个三角形全等 则这两个三角形相似 2 若x 5 则x 10 解 命题 1 是真命题 命题 2 是假命题所以命题 1 中的p是q的充分条件 二 新课 复习 小结 作业 新课 认清条件和结论 可先简化命题 将命题转化为等价的逆否命题后再判断 否定一个命题只要举出一个反例即可 判别充分条件与必要条件 二 新课 例2下列 若p 则q 形式的命题中 哪些命题中的q是p的必要条件 复习 小结 作业 新课 1 若x y 则x2 y2 2 若两个三角形全等 则这两个三角形的面积相等 3 若a b 则ac bc 解 命题 1 2 是真命题 命题 3 是假命题 所以命题 1 2 中的q是p的必要条件 二 新课 练习3下列 若p 则q 形式的命题中 哪些命题中的p是q的必要条件 复习 小结 作业 新课 1 若a 5是无理数 则a是无理数 2 若 x a x b 0 则x a 解 命题 1 2 的逆命题都是真命题 所以命题 1 2 中的p是q的必要条件 分析 注意这里考虑的是命题中的p是q的必要条件 所以应该分析下列命题的逆命题的真假性 二 新课 复习 小结 作业 新课 答 命题 1 为真命题 命题 2 为真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绿色金融产品创新模式与风险管理分析报告
- 现场作业讲评课件
- 上海市嘉定区嘉定二中2026届高三上化学期中预测试题含解析
- 2025年营养师考试模拟试卷:冲刺阶段营养干预方案设计
- 2025年电气工程师考试试卷:电气自动化控制专项训练
- 2025年银行从业资格考试 银行法律法规专项训练试卷
- 2025年电气工程师考试重点难点 电气设计专项训练试题集
- 2025年小学数学毕业升学考试综合题型冲刺试卷
- 2025年小学数学毕业升学考试易错题型解析与应用模拟试卷
- 新疆伊宁生产建设兵团五校联考2026届化学高一上期中复习检测试题含解析
- 2025-2026学年人音版(简谱)(2024)初中音乐七年级上册教学计划及进度表
- 2025新课标中考英语词汇表
- 楼梯 栏杆 栏板(一)22J403-1
- 膀胱镜检查记录
- 沈阳终止解除劳动合同证明书(三联)
- 化工装置静设备基本知识
- 电脑节能环保证书
- 美国共同基金SmartBeta布局及借鉴
- 露天矿山危险源辨识汇总
- 2022年08月安徽省芜湖市招考大学生科技特派员岗位冲刺题(带答案)
- 国家城镇救援队伍能力建设与分级测评指南
评论
0/150
提交评论