高考数学一轮复习课后限时集训51圆的方程理北师大版.docx_第1页
高考数学一轮复习课后限时集训51圆的方程理北师大版.docx_第2页
高考数学一轮复习课后限时集训51圆的方程理北师大版.docx_第3页
高考数学一轮复习课后限时集训51圆的方程理北师大版.docx_第4页
高考数学一轮复习课后限时集训51圆的方程理北师大版.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课后限时集训51圆的方程建议用时:45分钟一、选择题1已知方程x2y2kx2yk20所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为()A(1,1)B(1,0)C(1,1)D(0,1)D由x2y2kx2yk20知所表示圆的半径r,要使圆的面积最大,须使半径最大,所以当k0时,rmax1,此时圆的方程为x2y22y0,即x2(y1)21,所以圆心为(0,1)2以(a,1)为圆心,且与两条直线2xy40,2xy60同时相切的圆的标准方程为()A(x1)2(y1)25B(x1)2(y1)25C(x1)2y25Dx2(y1)25A由题意得,点(a,1)到两条直线的距离相等,且为圆的半径r.,解得a1.r,所求圆的标准方程为(x1)2(y1)25.3设P(x,y)是曲线x2(y4)24上任意一点,则的最大值为()A.2BC5D6A的几何意义为点P(x,y)与点A(1,1)之间的距离易知点A(1,1)在圆x2(y4)24的外部,由数形结合可知的最大值为22.故选A.4动点A在圆x2y21上移动时,它与定点B(3,0)连线的中点的轨迹方程是()A(x3)2y24B(x3)2y24C(2x3)24y21D2y2C设中点M(x,y),则动点A(2x3,2y)点A在圆x2y21上,(2x3)2(2y)21,即(2x3)24y21.故选C.5过三点A(1,3),B(4,2),C(1,7)的圆交y轴于M,N两点,则|MN|()A2B8C4D10C设圆的方程为x2y2DxEyF0,则解得圆的方程为x2y22x4y200.令x0,得y22或y22,M(0,22),N(0,22)或M(0,22),N(0,22),|MN|4,故选C.二、填空题6设P是圆(x3)2(y1)24上的动点,Q是直线x3上的动点,则|PQ|的最小值为_4如图所示,圆心M(3,1)与直线x3的最短距离为|MQ|3(3)6,又圆的半径为2,故所求最短距离为624.7圆(x1)2(y2)21关于直线yx对称的圆的方程为_(x2)2(y1)21设对称圆的方程为(xa)2(yb)21,圆心(1,2)关于直线yx的对称点为(2,1),故对称圆的方程为(x2)2(y1)21.8圆C的圆心在x轴上,并且经过点A(1,1),B(1,3),若M(m,)在圆C内,则m的范围为_(0,4)设圆心为C(a,0),由|CA|CB|得(a1)212(a1)232.所以a2.半径r|CA|.故圆C的方程为(x2)2y210.由题意知(m2)2()210,解得0m4.三、解答题9已知M(x,y)为圆C:x2y24x14y450上任意一点,且点Q(2,3)(1)求|MQ|的最大值和最小值;(2)求的最大值和最小值解(1)由圆C:x2y24x14y450,可得(x2)2(y7)28,圆心C的坐标为(2,7),半径r2.又|QC|4,|MQ|max426,|MQ|min422.(2)可知表示直线MQ的斜率k.设直线MQ的方程为y3k(x2),即kxy2k30.由直线MQ与圆C有交点,所以2,可得2k2,的最大值为2,最小值为2.10.如图,等腰梯形ABCD的底边AB和CD长分别为6和2,高为3.(1)求这个等腰梯形的外接圆E的方程;(2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程解(1)由已知可知A(3,0),B(3,0),C(,3),D(,3),设圆心E(0,b),由|EB|EC|可知(03)2(b0)2(0)2(b3)2,解得b1.所以r2(03)2(10)210.所以圆的方程为x2(y1)210.(2)设P(x,y),由点P是MN中点,得M(2x5,2y2)将M点代入圆的方程得(2x5)2(2y3)210,即22.1(2018全国卷)直线xy20分别与x轴,y轴交于A,B两点,点P在圆(x2)2y22上,则ABP面积的取值范围是()A2,6B4,8C,3D2,3A圆心(2,0)到直线的距离d2,所以点P到直线的距离d1,3根据直线的方程可知A,B两点的坐标分别为A(2,0),B(0,2),所以|AB|2,所以ABP的面积S|AB|d1d1.因为d1,3,所以S2,6,即ABP面积的取值范围是2,62若直线ax2by20(a0,b0)始终平分圆x2y24x2y80的周长,则的最小值为()A1B5C4D32D由题意知圆心C(2,1)在直线ax2by20上,2a2b20,整理得ab1,(ab)33232,当且仅当,即b2,a1时,等号成立的最小值为32.3已知圆C截y轴所得的弦长为2,圆心C到直线l:x2y0的距离为,且圆C被x轴分成的两段弧长之比为31,则圆C的方程为_(x1)2(y1)22或(x1)2(y1)22设圆C的方程为(xa)2(yb)2r2,则点C到x轴,y轴的距离分别为|b|,|a|.由题意可知或故所求圆C的方程为(x1)2(y1)22或(x1)2(y1)22.4已知以点P为圆心的圆经过点A(1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|4.(1)求直线CD的方程;(2)求圆P的方程解(1)由题意知,直线AB的斜率k1,中点坐标为(1,2)则直线CD的方程为y2(x1),即xy30.(2)设圆心P(a,b),则由点P在CD上得ab30.又因为直径|CD|4,所以|PA|2,所以(a1)2b240.由解得 或 所以圆心P(3,6)或P(5,2)所以圆P的方程为(x3)2(y6)240或(x5)2(y2)240.1(2019厦门模拟)设点P(x,y)是圆:x2(y3)21上的动点,定点A(2,0),B(2,0),则的最大值为_12由题意,知(2x,y),(2x,y),所以x2y24,由于点P(x,y)是圆上的点,故其坐标满足方程x2(y3)21,故x2(y3)21,所以(y3)21y246y12.易知2y4,所以,当y4时,的值最大,最大值为641212.2. 在平面直角坐标系xOy中,曲线:yx2mx2m(mR)与x轴交于不同的两点A,B,曲线与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由(2)求证:过A,B,C三点的圆过定点解由曲线:yx2mx2m(mR),令y0,得x2mx2m0.设A(x1,0),B(x2,0),可得m28m0,则m0或m8,x1x2m,x1x22m.令x0,得y2m,即C(0,2m)(1)若存在以AB为直径的圆过点C,则0,得x1x24m20,即2m4m20,所以m0(舍去)或m.此时C(0,1),AB的中点M即圆心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论