




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学竞赛辅导第三讲 立体几何解题的基本策略 一 点 线 面间关系的转化 立体几何的知识告诉我们 最核心的内容是线面间的的垂直 平行关系 而它们又通过判定定理 性质定理而相互转化 定理的应用过程实质上就是下述诸关系的联系与转化 例1 如图 二面角 AB 的平面角为300 在 上作AD AB AD 10 过D作CD 于D 若 ACB 600 求AC与BD的距离 解 作BE AC CE AB 连EC ED 则AC 面BCE 直线AC到面BDE的距离就是AC到BD的距离 这时 AC上任一点到面BDE的距离就是所求 由DC 知 DC AC 又AD AB 根据三垂线定理 AC AB 但AB AC 故AC CE 从而AC 面CDE 又BE AC 得BE 面CDE 进而面BDE 面CDE 三个步骤 一 线线距离转化为线面距离 E 二 再转化为点面距离 三 计算距离 解法二用体积法计算VD BCE VC BDE 解法三外接于一个长方体用补形的方法解决 二 平面化的思考 在空间 选取一个恰当的平面 使问题在这个平面上获得突破性的进展 甚至全部解决 是一种自然而重要的思考 怎样选取平面呢 有以下几个主要方法 1 截面法2 隔离法3 展平法4 投影法 例2 在正方体ABCD A1B1C1D1中 设 C1D1B所在的半平面为 CD1B所在的半平面为 BD1所在的直线是 与 的交线 求二面角 BD1 的度数 M N 因为二面角的平面角的度数是由相应平面角的来表示的 所以解题的一个方向是找平面角 分析 解 在平面ABC1D1上 由点A向BD1引垂线 与BD1交于M 与BC1交于N 连CM 由于正方体关于面BB1D1D的对称性 必有CM BD1 因此 NMC就是二面角的平面 设正方体的棱长为 则AC2 CD12 2a2 AM2 MC2 a2 在 AMC中 由余弦定理得 AMC 1200 从而 MAC 600 即二面角 BD1 的度数为600 例5 若空间四边形的两组对边相等 则两条对角线的中点连线垂直对角线 三 图形变换 证明如图 空间四边形ABCD中 M N是对角AC BD的中点 现将A与C交换 B与D交换 得到同一位置的空间四边形 而这个四边形又可看作一个绕着某一轴 轴对称 旋转1800得到另一个 由A与C关M于对称 B与D关于N对称知 对称轴必经过MN 从MN AC MN BD 图形变换包括 1 空间的对称2 空间的旋转3 空间的折叠4 空间的展平 直观上补充成为长方体 则MN是上下底面中心的连线 它与上下底面都垂直 当然是同时垂直于AC BD 例4 如图 已知给一个长方体 其共顶点的3条棱互不相等 现在要由一顶点沿表面到对角顶点 求最短的线路 分析 将长方体各面展于同一平面上 可省去底面ABCD 由两点间距离最短知 有三条相对短的走法 设三条共点棱长为AB a AD b AA1 c 且由勾股定理可算得AFC1最短 F F 四 体积法 用两种方法计算同一体积 从而得出未知数的等量关系 这是平面几何的面积法的直接推广 用这种方法求点到平面的距离时 可免去找距离线段或论证垂直关系的推理过程 在种方法多用于四面体和长方体 因为它们对底面的选择有很大的自由度 可以方便地 换底 例5如图 已知ABCD是边长为4的正方形 E F分别是AB AD的中点 CG垂直于ABCD所在的平面 且CG 2 求B点到平面GEF的距离 H 解 连BF BG 有 2 记H为AC与EF的交点 由CG为平面AC的垂线 AC EF知 CH EF 且由 知 根据等积关系 有 得到B到平面GEF的距离是 五 基本图形法 立体几何中的基本图形是正方体 熟练掌握正方体的基本性质和各类线面关系 对于解题是非常有益的 一旦遇到新问题 我们或者补充为一个正方体 或者分割成几个正方体 能割善补 是学习立体几何的诀窍 例6有三个边长为的正方形 分别将每一个正方形的一个角按两邻边中点连线剪下 按图分别接在边长为a的正六边形各边上 然后沿正六边形各边将其余部分折起 如图 求所成立体图形的体积 解法一 分割 将 立体图形分割为一个正六棱锥P ABCDEF与三个三棱锥P GAF P HBC P KDE之和 解法二 补充 将立体图形补充为一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新疆中新建数字发展有限责任公司市场化招聘1人备考考试题库附答案解析
- 2025云南文山州小坝子镇储备一批村“两委”后备干部笔试备考题库及答案解析
- 2025年河北唐山市市直机关公开遴选公务员50人备考考试题库附答案解析
- 2025江苏常州市三河口高级中学招聘2人备考考试题库附答案解析
- 2025年甘肃省酒泉市金塔胡杨文化旅游投资集团有限公司招聘景区服务工作人员230人备考考试题库附答案解析
- 2025秋小学语文统编版(五四制)(2018)第二单元测试卷(附参考答案)
- 2025云南玉溪兴洁垃圾处理有限公司招聘劳务派遣驾驶员1人备考练习题库及答案解析
- 掌握工业机械
- 声音信号演化-洞察及研究
- 运动安全知识
- 2025至2030全球及中国汽车外饰件行业项目调研及市场前景预测评估报告
- 酒店运营管理权委托合同
- 移动公司干部管理制度
- 住院患者血糖管理制度
- 儿童热性惊厥课件
- 华为IPD流程管理体系L1至L5最佳实践
- 《北京人》(剧本全本)曹禺-(三幕剧)
- 组织细胞的适应
- 农业企业技术创新与国际市场竞争研究-洞察阐释
- 禁毒社工考试试题及答案
- 2025-2030年中国教辅书市场发展趋势与前景展望研究报告
评论
0/150
提交评论