




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内部网关协议IGP1自治系统as1选路信息协议(RIP)2OSPF4OSPF协议与RIP协议比较7HUB8内部网关协议IGPIGP(interior Gateway Protocols)内部网关协议在同一个自治系统内交换路由信息,RIP,OSPF和ISIS都属于IGP。IGP的主要目的是发现和计算自治域内的路由信息。自治系统as一个自治系统就是处于一个管理机构控制之下的路由器和网络群组。它可以是一个路由器直接连接到一个LAN上,同时也连到Internet上;它可以是一个由企业骨干网互连的多个局域网。在一个自治系统中的所有路由器必须相互连接,运行相同的路由协议,同时分配同一个自治系统编号。自治系统之间的链接使用外部路由协议,例如B G P.自治系统:autonomous system。在互联网中,一个自治系统(AS)是一个有权自主地决定在本系统中应采用何种路由协议的小型单位。这个网络单位可以是一个简单的网络也可以是一个由一个或多个普通的网络管理员来控制的网络群体,它是一个单独的可管理的网络单元(例如一所大学,一个企业或者一个公司个体)。一个自治系统有时也被称为是一个路由选择域(routing domain)。一个自治系统将会分配一个全局的唯一的号码,有时我们把这个号码叫做自治系统号(ASN)。一个自治系统网络内部进行路由信息的通信使用内部网关协议(IGP,Gateway Protocol),而各个自治系统网络之间是通过边界网关协议(BGP,Border Gateway Protocol)来共享路由信息的。以前,我们通常使用外部网关协议(EGP,Exterior Gateway Protocol)来进行路由信息的通信。将来,边界网关协议将有望取代OSI中的域间选路协议(Inter-Domain Routing Protocol,IDRP)。互联网协议指南给自治系统提出了如上的的定义后,又提出了一个更具有技术性的定义如下:一个自治系统即为由一个或多个网络运营商来运行一个或多个网络协议前缀的网络连接组合,这些运营商往往都具有单独的定义明确的路由策略选路信息协议(RIP)使用最广泛的一种IGP是选路信息协议RIP(Routing Information Protocol),RIP的另一个名字是routed(路由守护神),来自一个实现它的程序。这个程序最初由加利福尼亚大学伯克利分校设计,用于给他们在局域网上的机器提供一致的选路和可达信息。它依靠物理网络的广播功能来迅速交换选路信息。它并不是被设计来用于大型广域网的(尽管现在的确这么用)。在旋乐(Xerox)公司的Palo Alto研究中心PARC早期所作的关于网络互连的研究的基础上,routed实现了起源于Xerox NS RIP的一个新协议,它更为通用化,能够适应多种网络。管在其前辈上做了一些小改动,RIP作为IGP流行起来并非技术上有过人之处,而是由于伯克利分校把路由守护神软件附加在流行的4BSD UNIX系统上一起分发,从而使得许多TCP/IP网点根本没考虑其技术上的优劣就采用routed并开始使用RIP。一旦安装并使用了这个软件,它就成为本地选路的基础,研究人员也开始在大型网络上使用它。关于RIP的最令人吃惊的事可能就是它在还没有正式标准之前就已经广泛流行了。大多数的实现都脱胎于伯克利分校的程序,但是由于编程人员对未形成文档的微妙细节理解不同而造成了它们之间互操作性限制。协议出现新版本后,出现了更多的问题。在1988年6月形成了一个RFC标准,这才使软件商解决了互操作性问题。RIP协议的基赐是基于本地网的矢量距离选路算法的直接而简单的实现。它把参加通信的机器分为主机的(active)和被动的(passive或silent)。主动路由器向其他路由器通告其路由,而被动路由器接收通告并在此基础上更新其路由,它们自己并不通告路由。只有路由器能以主动方式使用RIP,而主机只能使用被动方式。以主动方式运行RIP的路由器每隔30秒广播一次报文,该报文包含了路由器当前的选路数据库中的信息。每个报文由序偶构成,每个序偶由一个IP网络地址和一个代表到达该网络的距离的整数构成。RIP使用跳数度量(hop count metric)来衡量到达目的站的距离。在RIP度量标准中,路由器到它直接相连的网络的跳数被定义为1,到通过另一个路由器可达的网络的距离为2跳,其余依此类推。因此从给定源站到目的站的一条路径的跳数(number of hops或hop count)对应于数据报沿该路传输时所经过的路由器数。显然,使用跳数作为衡量最短路径并不一定会得到最佳结果。例如,一条经过三个以太网的跳数为3的路径,可能比经过两条低速串行线的跳数为2的路径要快得多。为了补偿传输技术上的差距,许多RIP软件在通告低速网络路由时人为地增加了跳数。运行RIP的主动机器和被动机器都要监听所有的广播报文,并根据前面所说的矢量距离算法来更新其选路表。例如图1.2中的互连网络中,路由器R1在网络2上广播的选路信息报文中包含了序偶(1,1),即它能够以费用值1到达网络1。路由器R2和R5收到这个广播报文之后,建立一个通过R1到达网络1的路由(费用为2)。然后,路由器R2和R5在网络3上广播它们的RIP报文时就会包含序偶(1,2)。最终,所有的路由器和主机都会建立到网络1的路由。RIP规定了少量的规则来改进其性能和可靠性。例如,当路由器收到另一个路由器传来的路由时,它将保留该路由直到收到更好的路由。在我们所举的例子中,如果路由器R2和R5都以费用2来广播到网络1的路由,那么R3的R4就会将路由设置为经过先广播的那个路由器到达网络1。即:为了防止路由在两个或多个费用相等的路径之间振荡不定,RIP规定在得到费用更小的路由之前保留原有路由不变。如果第一个广播路由的路由器出故障(如崩溃)会有什么后果?RIP规定所有收听者必须对通过RIP获得的路由设置定时器。当路由器在选路表中安置新路由时,它也为之设定了定时器。当该路由器又收到关于该路由的另一个广播报文后,定时器也要重新设置。如果经过180秒后还没有下一次通告该路由,它就变为无效路由。RIP必须处理下层算法的三类错误。第一,由于算法不能明确地检测出选路的回路,RIP要么假定参与者是可信赖的,要么采取一定的预防措施。第二,RIP必须对可能的距离使用一个较小的最大值来防止出现不稳定的现象(RIP使用的值是16)。因而对于那些实际跳数值在16左右的互连网络,管理者要么把它划分为若干部分,要么采用其他的协议。第三,选路更新报文在网络之间的传输速度很慢,RIP所使用的矢量距离算法会产生慢收敛(slow convergence)或无限计数(count to infinity)问题从而引发不一致性。选择一个小的无限大值(16),可以限制慢收敛问题,但不能彻底解决客观存在。选路表的不一致问题并非仅在RIP中出现。它是出现在任何矢量距离协议中的一个根本性的问题,在此协议中,更新报文仅仅包含由目的网络及到达该网络的距离构成的序偶。R1直接与网络1相连,所以在它的选路表中有一条到该网络的距离为1的路由;在周期性的路由广播中包括了这个路由。R2从R1处得知了这个路由,并在自己的选路表中建立了相应的路由产工将之以距离值2广播出去。最后R3从R2处得知该路由并以距离值3广播。现在假设R1到网络1的连接失效了。那么R1立即更新它的选路表把该路由的距离置为16(无穷大)。在下一次广播时,R1应该通告这一信息。但是,除非协议包含了额外的机制预防此类情况,可能有其他的路由器在R1广播之前就广播了其路由。可能假设一个特殊的情况,即R2正好在R1与网络1连接失效后通告其路由。因此,R1就会收到R2的报文,并对此使用通常的矢量距离算法:它注意到R2有到达网络1的费用更低的路由,计算出现在到达网络1需要3跳(R2通告的到网络1费用是2跳,再加上到R2的1跳)。然后在选路表中装入新的通过R2到达网络1的路由。图1.4描述了这个结果。这样的话,R1和R2中的任一个收到去网络1的数据报之后,就会把该报文在两者之间来回传输直到寿命计时器超时溢出。这两个路由器随后广播的RIP不能迅速解决这个问题。在下一轮交换选路信息的过程中,R1通告它的选路表中的各个项目。而R2得知R1到网络1的距离是3之后,计算出该路由新长度4。到第三轮的时候,R1收到从R2传来的路由距离增加的信息,把自己的选路表中该路由的距离增到5。如此循环往复,直至距离值到达RIP的极限。OSPFOSPF是一种典型的链路状态路由协议。采用OSPF的路由器彼此交换并保存整个网络的链路信息,从而掌握全网的拓扑结构,独立计算路由。因为RIP路由协议不能服务于大型网络,所以,IETF的IGP工作组特别开发出链路状态协议OSPF。目前广为使用的是OSPF第二版,最新标准为RFC2328。目录基本概念和术语协议操作OSPF作为一种内部网关协议(Interior Gateway Protocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议(RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。基本概念和术语1. 链路状态OSPF路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-State Database)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的拓扑状况。OSPF路由器利用“最短路径优先算法(Shortest Path First, SPF)”,独立地计算出到达任意目的地的路由。2. 区域OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“区域”(Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。3. OSPF网络类型根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast multiAccess)、非广播多路访问型(None Broadcast MultiAccess,NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。广播多路访问型网络如:Ethernet、Token Ring、FDDI。NBMA型网络如:Frame Relay、X.25、SMDS。Point-to-Point型网络如:PPP、HDLC。4. 指派路由器(DR)和备份指派路由器(BDR)在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量开销,OSPF要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个BDR,在DR失效的时候,BDR担负起DR的职责。点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。 协议组成OSPF协议由Hello协议、交换协议、扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。当路由器开启一个端口的OSPF路由时,将会从这个端口发出一个Hello报文,以后它也将以一定的间隔周期性地发送Hello报文。OSPF路由器用Hello报文来初始化新的相邻关系以及确认相邻的路由器邻居之间的通信状态。对广播型网络和非广播型多路访问网络,路由器使用Hello协议选举出一个DR。在广播型网络里,Hello报文使用多播地址224.0.0.5周期性广播,并通过这个过程自动发现路由器邻居。在NBMA网络中,DR负责向其他路由器逐一发送Hello报文。协议操作第一步:建立路由器的邻接关系所谓“邻接关系”(Adjacency)是指OSPF路由器以交换路由信息为目的,在所选择的相邻路由器之间建立的一种关系。路由器首先发送拥有自身ID信息(Loopback端口或最大的IP地址)的Hello报文。与之相邻的路由器如果收到这个Hello报文,就将这个报文内的ID信息加入到自己的Hello报文内。如果路由器的某端口收到从其他路由器发送的含有自身ID信息的Hello报文,则它根据该端口所在网络类型确定是否可以建立邻接关系。在点对点网络中,路由器将直接和对端路由器建立起邻接关系,并且该路由器将直接进入到第三步操作:发现其他路由器。若为MultiAccess 网络, 该路由器将进入选举步骤。第二步:选举DR/BDR不同类型的网络选举DR和BDR的方式不同。MultiAccess网络支持多个路由器,在这种状况下, OSPF需要建立起作为链路状态和LSA更新的中心节点。选举利用Hello报文内的ID和优先权(Priority)字段值来确定。优先权字段值大小从0到255,优先权值最高的路由器成为DR。如果优先权值大小一样,则ID值最高的路由器选举为DR,优先权值次高的路由器选举为BDR。优先权值和ID值都可以直接设置。第三步:发现路由器在这个步骤中,路由器与路由器之间首先利用Hello报文的ID信息确认主从关系,然后主从路由器相互交换部分链路状态信息。每个路由器对信息进行分析比较,如果收到的信息有新的内容,路由器将要求对方发送完整的链路状态信息。这个状态完成后,路由器之间建立完全相邻(Full Adjacency)关系,同时邻接路由器拥有自己独立的、完整的链路状态数据库。在MultiAccess网络内,DR与BDR互换信息,并同时与本子网内其他路由器交换链路状态信息。Point-to-Point 或 Point-to-MultiPoint网络中,相邻路由器之间信息。第四步: 选择适当的路由器当一个路由器拥有完整独立的链路状态数据库后,它将采用SPF算法计算并创建路由表。OSPF路由器依据链路状态数据库的内容,独立地用SPF算法计算出到每一个目的网络的路径,并将路径存入路由表中。OSPF利用量度(Cost)计算目的路径,Cost最小者即为最短路径。在配置OSPF路由器时可根据实际情况,如链路带宽、时延或经济上的费用设置链路Cost大小。Cost越小,则该链路被选为路由的可能性越大。第五步:维护路由信息当链路状态发生变化时,OSPF通过Flooding 过程通告网络上其他路由器。OSPF路由器接收到包含有新信息的链路状态更新报文,将更新自己的链路状态数据库,然后用SPF算法重新计算路由表。在重新计算过程中,路由器继续使用旧路由表,直到SPF完成新的路由表计算。新的链路状态信息将发送给其他路由器。值得注意的是,即使链路状态没有发生改变,OSPF路由信息也会自动更新,默认时间为30分钟。【未完待续】OSPF协议与RIP协议比较一 从网络结构看:RIP的拓扑简单,适用于中小型网络。没有系统内外、系统分区、边界等概念,用的不是分类的路由。每一个节点只能处理以自己为头的至多16个节点的链,路由是依靠下一跳的个数来描述的,无法体现带宽与网络延迟。OSPF适用于较大规模网络。它把AS(自治系统)分成若干个区域,通过系统内外路由的不同处理,区域内和区域间路由的不同处理方法,引入摘要的概念,减少网络数据量的传输。OSPF对应RIP的距离,引入了权(metric)的概念。OSPF还把其他协议路由或者静态或核心路由作为AS外部路由引入,处理能力相当大。RIP的原始版本不支持VLSM(RIP2支持),OSPF支持VLSM(可变长度子网掩码)二 协议运行有差别 :RIP运行时,首先向外(直接邻居)发送请求报文,其他运行RIP的路由器收到请求报文后,马上把自己的路由表发送过去;在没收到请求报文时,定期(30 秒)广播自己的路由表,在180秒内如果没有收到某个相邻路由器的路由表,就认为它发生故障,标识为作废,120秒后还没收到,将此路由删除,并广播自己的新的路由表。OSPF运行时,用HELLO报文建立连接,然后迅速建立邻接关系,只在建立了邻接关系的路由器中发送路由信息;以后是靠,是靠定期发送HELLO报文去维持连接,相对RIP的路由表报文来说这个HELLO报文小的多,网络拥塞也就少了。HELLO报文在广播网上没10秒发送一次,在一定时间(4倍于 HELLO间隔)没有收到HELLO报文,认为对方已经死掉,从路由表中去掉,在LSDB中给它置位infintty(无穷大),并没有真正去掉它,以备它在起用时减少数据传输量,在它达到3600秒是真正去掉它。OSPF路由表也会重发,重发间隔为1800秒。三 使用情况不同:一般来说,OSPF占用的实际链路带宽比RIP少,因为它的路由表是有选择的广播(只在建立邻接的路由器间),而RIP是邻居之间的广播。OSPF使用的 CPU时间比RIP少,因为OSPF达到平衡后的主要工作是发送HELLO报文,RIP发送的是路由表(HELLO报文比路由表小的多)。OSPF使用的内存比RIP大,因为OSPF有一个相对大的路由表。RIP在网络上达到平衡用的时间比OSPF多,因为RIP往往发送/处理一些没用的路由信息。HUBHUB是一个多端口的转发器,当以HUB为中心设备时,网络中某条线路产生了故障,并不影响其它线路的工作。所以HUB在局域网中得到了广泛的应用。大多数的时候它用在星型与树型网络拓扑结构中,以RJ45接口与各主机相连(也有BNC接口),HUB按照不同的说法有很多种类。HUB按照对输入信号的处理方式上,可以分为无源HUB、有源HUB、智能HUB。无源HUB:它是最次的一种(词土了点儿_),不对信号做任何的处理,对介质的传输距离没有扩展,并且对信号有一定的影响。连接在这种HUB上的每台计算机,都能收到来自同一HUB上所有其它电脑发出的信号;有源HUB:有源HUB与无源HUB的区别就在于它能对信号放大或再生,这样它就延长了两台主机间的有效传输距离;智能HUB:一听这词就知道这家伙一定比那两个强!智能HUB除具备有源HUB所有的功能外,还有网络管理及路由功能。在智能HUB网络中,不是每台机器都能收到信号,只有与信号目的地址相同地址端口计算机才能收到。有些智能HUB可自行选择最佳路径,这就对网络有很好的管理。按其它方法还有很多种类,如10M、100M、10/100M自适应HUB等等,这里就不一一介绍了。总之,现在的市场价格贵不到那去,尽量买好一点的。如果我们经常接触网络,对作为构建局域网的基础设备集线器应该不会陌生,但是对于集线器背后各方面的知识,我们又知道多少呢?一、集线器的定义集线器(HUB)属于数据通信系统中的基础设备,它和双绞线等传输介质一样,是一种不需任何软件支持或只需很少管理软件管理的硬件设备。它被广泛应用到各种场合。集线器工作在局域网(LAN)环境,像网卡一样,应用于OSI参考模型第一层,因此又被称为物理层设备。集线器内部采用了电器互联,当维护LAN的环境是逻辑总线或环型结构时,完全可以用集线器建立一个物理上的星型或树型网络结构。在这方面,集线器所起的作用相当于多端口的中继器。其实,集线器实际上就是中继器的一种,其区别仅在于集线器能够提供更多的端口服务,所以集线器又叫多口中继器。普通集线器外部板面结构非常简单。比如D-Link最简单的10BASET EthernetHub集线器是个长方体,背面有交流电源插座和开关、一个AUI接口和一个BNC接口,正面的大部分位置分布有一行17个RJ-45接口。在正面的右边还有与每个RJ-45接口对应的LED接口指示灯和LED状态指示灯。高档集线器从外表上看,与现代路由器或交换式路由器没有多大区别。尤其是现代双速自适应以太网集线器,由于普遍内置有可以实现内部10Mbs和100Mbs网段间相互通信的交换模块,使得这类集线器完全可以在以该集线器为节点的网段中,实现各节点之间的通信交换,有时大家也将此类交换式集线器简单地称之为交换机,这些都使得初次使用集线器的用户很难正确地辨别它们。但根据背板接口类型来判别集线器,是一种比较简单的方法。二、 集线器的工作特点依据IEEE 8023协议,集线器功能是随机选出某一端口的设备,并让它独占全部带宽,与集线器的上联设备(交换机、路由器或服务器等)进行通信。由此可以看出,集线器在工作时具有以下两个特点。首先是Hub只是一个多端口的信号放大设备,工作中当一个端口接收到数据信号时,由于信号在从源端口到Hub的传输过程中已有了衰减,所以Hub便将该信号进行整形放大,使被衰减的信号再生(恢复)到发送时的状态,紧接着转发到其他所有处于工作状态的端口上。从Hub的工作方式可以看出,它在网络中只起到信号放大和重发作用,其目的是扩大网络的传输范围,而不具备信号的定向传送能力,是个标准的共享式设备。因此有人称集线器为“傻Hub”或“哑Hub”。其次是Hub只与它的上联设备(如上层Hub、交换机或服务器)进行通信,同层的各端口之间不会直接进行通信,而是通过上联设备再将信息广播到所有端口上。由此可见,即使是在同一Hub的不同两个端口之间进行通信,都必须要经过两步操作:第一步是将信息上传到上联设备;第二步是上联设备再将该信息广播到所有端口上。不过,随着技术的发展和需求的变化,目前的许多Hub在功能上进行了拓宽,不再受这种工作机制的影响。由Hub组成的网络是共享式网络,同时Hub也只能够在半双工下工作。Hub主要用于共享网络的组建,是解决从服务器直接到桌面最经济的方案。在交换式网络中,Hub直接与交换机相连,将交换机端口的数据送到桌面。使用Hub组网灵活,它处于网络的一个星型结点,对结点相连的工作站进行集中管理,不让出问题的工作站影响整个网络的正常运行,并且用户的加入和退出也很自由。三、集线器分类集线器有很多种类型。1按结构和功能分类按结构和功能分类,集线器可分为未管理的集线器、堆叠式集线器和底盘集线器三类。(1)未管理的集线器最简单的集线器通过以太网总线提供中央网络连接,以星形的形式连接起来。这称之为未管理的集线器,只用于很小型的至多12个节点的网络中(在少数情况下,可以更多一些)。未管理的集线器没有管理软件或协议来提供网络管理功能,这种集线器可以是无源的,也可以是有源的,有源集线器使用得更多。(2)堆叠式集线器堆叠式集线器是稍微复杂一些的集线器。堆叠式集线器最显著的特征是8个转发器可以直接彼此相连。这样只需简单地添加集线器并将其连接到已经安装的集线器上就可以扩展网络,这种方法不仅成本低,而且简单易行。(3)底盘集线器底盘集线器是一种模块化的设备,在其底板电路板上可以插入多种类型的模块。有些集线器带有冗余的底板和电源。同时,有些模块允许用户不必关闭整个集线器便可替换那些失效的模块。集线器的底板给插入模块准备了多条总线,这些插入模块可以适应不同的段,如以太网、快速以太网、光纤分布式数据接口(Fiber Distributed Data Interface,FDDl)和异步传输模式(Asynchronous Transfer Mode,ATM)中。有些集线器还包含有网桥、路由器或交换模块。有源的底盘集线器还可能会有重定时的模块,用来与放大的数据信号关联。2按局域网的类型分类从局域网角度来区分,集线器可分为五种不同类型。(1)单中继网段集线器最简单的集线器,是一类用于最简单的中继式LAN网段的集线器,与堆叠式以太网集线器或令牌环网多站访问部件(MAU)等类似。(2)多网段集线器从单中继网段集线器直接派生而来,采用集线器背板,这种集线器带有多个中继网段。其主要优点是可以将用户分布于多个中继网段上,以减少每个网段的信息流量负载,网段之间的信息流量一般要求独立的网桥或路由器。(3)端口交换式集线器该集成器是在多网段集线器基础上,将用户端口和多个背板网段之间的连接过程自动化,并通过增加端口交换矩阵(PSM)来实现的集线器。PSM可提供一种自动工具,用于将任何外来用户端口连接到集线器背板上的任何中继网段上。端口交换式集线器的主要优点是,可实现移动、增加和修改的自动化特点。(4)网络互联集线器端口交换式集线器注重端口交换,而网络互联集线器在背板的多个网段之间可提供一些类型的集成连接,该功能通过一台综合网桥、路由器或LAN交换机来完成。目前,这类集线器通常都采用机箱形式。 (5)交换式集线器目前,集线器和交换机之间的界限已变得模糊。交换式集线器有一个核心交换式背板,采用一个纯粹的交换系统代替传统的共享介质中继网段。此类产品已经上市,并且混合的(中继交换)集线器很可能在以后几年控制这一市场。应该指出,这类集线器和交换机之间的特性几乎没有区别。四、 局域网集线器选择随着技术的发展,在局域网尤其是些大中型局域网中,集线器已逐渐退出应用,而被交换机代替。目前,集线器主要应用于一些中小型网络或大中型网络的边缘部分。下面以中小型局域网的应用为特点,介绍其选择方法。1以速度为标准集线器速度的选择,主要决定于以下3个因素。(1)上联设备带宽如果上联设备允许跑100Mbits,自然可购买lOOMbits集线器;否则lOMbits集线器应是理想选择,由于是对于网络连接设备数较少,而且通信流量不是很大的网络来说,lOMbits集线器就可以满足应用需要。(2)提供的连接端口数由于连接在集线器上的所有站点均争用同一个上行总线,所以连接的端口数目越多,就越容易造成冲突。同时,发往集线器任一端口的数据将被发送至与集线器相连的所有端口上,端口数过多将降低设备有效利用率。依据实践经验,一个lOMbits集线器所管理的计算机数不宜超过15个,lOOMbits的不宜超过25个。如果超过,应使用交换机来代替集线器。(3)应用需求传输的内容不涉及语音、图像,传输量相对较小时,选择10Mbits即可。如果传输量较大,且有可能涉及多媒体应用(注意集线器不适于用来传输时间敏感性信号,如语音信号)时, 应当选择100Mbits或10100Mbits自适应集线器。10100Mbits自适应集线器的价格一般要比100Mbits的高。2以能否满足拓展为标准当一个集线器提供的端口不够时,一般有以下两种拓展用户数目的方法。(1)堆叠堆叠是解决单个集线器端口不足时的一种方法,但是因为堆叠在一起的多个集线器还是工作在同一个环境下,所以堆叠的层数也不能太多。然而,市面上许多集线器以其堆叠层数比其他品牌的多而作为卖点,如果遇到这种情况,要区别对待:一方面可堆叠层数越多,一般说明集线器的稳定性越高;另一方面可堆叠层数越多,每个用户实际可享有的带宽则越小。(2)级连级连是在网络中增加用户数的另一种方法,但是此项功能的使用般是有条件的,即Hub必须提供可级连的端口,此端口上常标为“Uplink”或“MDI”的字样,用此端口与其他的Hub进行级连。如果没有提供专门的端口而必须要进行级连时,连接两个集线器的双绞线在制作时必须要进行错线。3以是否提供网管功能为标准早期的Hub属于一种低端的产品,且不可管理。近年来,随着技术的发展,部分集线器在技术上引进了交换机的功能,可通过增加网管模块实现对集线器的简单管理(SNMP),以方便使用。但需要指出的是,尽管同是对SNMP提供支持,不同厂商的模块是不能混用的,同时同一厂商的不同产品的模块也不同。目前提供SNMP功能的Hub其售价较高,如D-Link公司的DEl824非智能型24口10Base-T的售价比加装网管模块后的DEl8241要便宜1000元左右。4以外形尺寸为参考如果网络系统比较简单,没有楼宇之间的综合布线,而且网络内的用户比较少,如一个家庭、一个或几个相邻的办公室,则没有必要再考虑Hub的外形尺寸。但是有的时候情况并非如此,例如为了便于对多个Hub进行集中管理,在购买Hub之前已经购置了机柜,这时在选购Hub时必须要考虑它的外形尺寸,否则Hub无法安装在机架上。现在市面上的机柜在设计时一般都遵循19英寸的工业规范,它可安装大部分的5口、8口、16口和24口的Hub。不过,为了防止意外,在选购时一定注意它是否符合19英寸工作规范,以便在机柜中安全、集中地进行管理。5适当考虑品牌和价格像网卡一样,目前市面上的Hub基本由美国品牌和中国台湾品牌占据,近来大陆几家公司也相继推出了集线器产品。其中高档Hub主要还是由美国品牌占领,如3COM、Intel、Bay等,它们在设计上比较独特,一般几个甚至是每个端口配置一个处理器,当然,价格也较高。我国台湾地区的D-Link和Accton占有了中低端Hub的主要份额,大陆的联想、实达、TPLink等公司分别以雄厚的实力向市场上推出了自己的产品。这些中低档产品均采用单处理器技术,其外围电路的设计思想大同小异,实现这些思想的焊接工艺手段也基本相同,价格相差不多,大陆产品相对略便宜些,正日益占据更大的市场份额。近来,随交换机产品价格的日益下降,集线器市场日益痿缩,不过,在特定的场合,集线器以其低延迟的特点可以用更低的投入带来更高的效率。交换机不可能完全代替集线器。五、集线器常见故障的分析处理对于最普通最常用的星型拓扑结构来说,集线器(HUB)是心脏部分,一旦它出 问题,整个网络便无法工作,所以它的好坏对于整个网络来说都是相当重要的。集线器(HUB)或交换机(Switch)是局域网中用得最为普及的设备。一般情况下,它们为用户查找网络故障提供方便,如通过观察与HUB(或Switch)连接端口的指示灯是否发亮,可以判断网络连接是否正常。对于lOlOOMbs自适应HUB(或Switch)而言,还可通过连接端口指示灯的不同颜色来判断被连接的电脑是工作在10Mbs状态下,还是lOOMbs状态下。所以,在大多数应用场合,HUB(或Switch)的使用是有利于网络维护的。但是,因为HUB(或Switch)的使用不当或自身损坏,都将给网络的连接带来问题。1集线器在100Mbs网络中的应用故障故障现象将网络从10Mbs升级到100Mbs后,网络无法正常工作。故障分析处理在局域网中,当网络的连接范围较大时,可通过HUB之间的级联扩大网络的传输距离。在10Mbs网络中最多可级联四级,使网络的最大传输距离达到600m。但当网络从10Mbs升级到100Mbs或新建一个100Mbs的局域网时,如果采用普通的方法对100MHUB进行连接将使局域网络无法正常工作。众所周知,在100Mbs网络中只允许对两个100Mbs的HUB进行级联,而且两个10MbsHUB之间的连接距离不能大于5m,所以100Mbs局域网在使用HUB时最大距离为205m。如果实际连接距离不符合以上要求,网络将无法连接。这一点要引起足够重视,否则在用户规划网络时很容易造成严重的错误。2。集线器在进行级联时的应用故障故障现象某单位自行组建一个局域网,使用了两个16口(还带一个级联端口)的10M共享式集线器,所有电脑通过HUB与总机房的HUB相连。其中HUBA通过级联端口连接到HUBB的第16个端口上,HUBB通过级连端口连接到总机房的HUB上,其他端口分别连接工作站。整个工作站使用静态IP地址,其值分别为19216802、19216803依次类推,19216801分配给NT服务器使用,每台电脑(包括服务器)的子网掩码全部为2552552550。在正式连接服务器前每设置一台工作站,都使用Ping命令进行测试,结果全部都连通,而且HUB A所连接的工作站全部也能用Ping命令与HUB B所连接的工作站相通。但是,当连入了服务器后,只有HUB B所连接的工作站能够登录服务器,而HUBA所连接的工作站却无法登录。故障分析处理通过观察电脑上网卡的指示灯,以及两个HUB上各端口的指示灯,除发现HUBB的第16个端口与HUB A的级联端口对应的指示灯不亮外,所有网卡和其他端口的指示灯都均匀发亮,说明电脑与HUB之间的连接均正常,因此问题极有可能是出在HUBA的级联端口与HUB B的第16个端口上。按照这种情况,开始怀疑在HUB A的级联端口和HUB B的第16个端口中至少有一个端口是坏的。为了进一步确认其端口是坏的,可将两个HUB的位置进行的调换,但结果依然如旧。接下来试着把连接HUB A级联端口的双绞线插在了HUB B的别处的一个普通端口上,结果问题解决了,网络中所有的工作站都能与服务器连通,而且两个HUB所连接的工作站都能相互得到响应。 由此可以看出,有些HUB的级联端口和与之紧靠的一个端口不是独立的两个端口,而应属于同一个端口(虽然存在两个独立的物理端口)。以前的许多HUB是使用了一个拨动开关在两个端口之间进行级联端口的选择,而在随后推出的产品中却省了这个开关,但如果将其中一个端口作为级联端口使用,另一个端口将无效。3HUB经常烧坏故障现象一台连接两幢楼的HUB经常烧坏,有时候一个月之中就要坏三四次。故障分析处理经测试,其中A楼的电源系统已经老化,零线绝对电压是30V,火线绝对电压是 250V,而用万用表量电压还是220V;UB到B楼HUB,则两个HUB要承受30V的电势差,很可能因此而损坏。解决的办法很简单,只需在A楼的交换机房接一根地线即可。六、集线器的基本工作原理我们知道在环型网络中只存在一个物理信号传输通道,都是通过一条传输介质来传输的,这样就存在各节点争抢信道的矛盾,传输效率较低。引入集线器这一网络集线设备后,每一个站是用它自己专用的传输介质连接到集线器的,各节点间不再只有一个传输通道,各节点发回来的信号通过集线器集中,集线器再把信号整形、放大后发送到所有节点上,这样至少在上行通道上不再出现碰撞现象。但基于集线器的网络仍然是一个共享介质的局域网,这里的共享其实就是集线器内部总线,所以当上行通道与下行通道同时发送数据时仍然会存在信号碰撞现象。当集线器将从其内部端口检测到碰撞时,产生碰撞强化信号(Jam)向集线器所连接的目标端口进行传送。 这时所有数据都将不能发送成功,形成网络大塞车。出现这种网络现象我们可以用一个形象的现实情形来说明,那就是单车道上同时有两个方向的车驰来,如图1所示。我们知道,单车道上通常只允许一个行驶方向的车通过,但是在小城镇,条件有限通常没有这样的规定,单车道也很有可能允许两个行驰方向的车通过,但是必须是不同时刻经过。在集线器中也一样,虽然各节点与集线器的连接已有各自独立的通道,但是在集线器内部却只有一个共同的通道,上、下行数据都必须通过这个共享通道发送和接收数据,这样有可能像单车道一样,当上、下行通道同时有数据发送时,就可能出现塞车现象。很好理解吧?正因为集线器的这一不足之处,所以它不能单独应用于较大网络中(通常是与交换机等设备一起分担小部分的网络通信负荷),就像在大城市中心不能有单车道一样,因为网络越来,出现网络碰撞现象的机会就越大。也正因如此,集线器的数据传输效率是比较低的,因为它在同一时刻只能有一个方向的数据传输,也就是所谓的单工方式。如果器网络中要选用集线器作为单一的集线设备,则网络规模最好在10台以内,而且集线器带宽应为10/100Mbps以上。集线器除了共享带宽这一不足之处外,还有一个方面在选择集线器时必须要考虑到,那就是它的广播方式。因为集线器属于纯硬件网络底层设备,基本上不具有智能记忆能力,更别说学习能力了。它也不具备交换机所具有的MAC地址表,所以它发送数据时都是没有针对性的,而是采用广播方式发送。也就是说当它要向某节点发送数据时,不是直接把数据发送到目的节点,而是把数据包发送到与集线器相连的所有节点,图示如图2所示。这种广播发送数据方式有两方面不足:(1)用户数据包向所有节点发送,很可能带来数据通信的不安全因素,一些别有用心的人很容易就能非法截获他人的数据包;(2)由于所有数据包都是向所有节点同时发送,加上以上所介绍的共享带宽方式,就更加可能造成网络塞车现象,更加降低了网络执行效率。七、集线器的安装了解了集线器的工作原理后,我们再来了解一下集线器在局域网中的安装与连接方法。接入设备最重要的是它的接口技术,不同的接口应用于不同的应用环境,不同的应用又对应于相应的接口,不仅集线器如此,包括后面将要讲到的交换机、路由器等都一样。集线器的接口相对来说是最简单的,为了使大家熟练地掌握集线器的各种应用连接,我们有必要对集线器的一些主要接口进行一下认识。1. 集线器常见端口集线器通常都提供三种类型的端口,即RJ-45端口、BNC端口和AUI端口,以适用于连接不同类型电缆构建的网络。一些高档集线器还提供有光纤端口和其他类型的端口。(1)RJ-45接口RJ-45接口可用于连接RJ-45接头,适用于由双绞线构建的网络,这种端口是最常见的,一般来说以太网集线器都会提供这种端口。我们平常所讲的多少口集线器,就是指的具有多少个RJ-45端口。如图3所示。集线器的RJ-45端口即可直接连接计算机、网络打印机等终端设备,也可以与其他交换机、集线器等集线设备和路由器进行连接。需要注意的是,当连接至不同设备时,所使用的双绞线电缆的跳线方法有所不同。具体参见前面介绍的网线制作篇内容介绍。(2)BNC端口BNC端口就是用于与细同轴电缆连接的接口,它一般是通过BNC T型接头进行连接的,图4所示的是一个集线器BNC端口通过BNC 型接头连接的示意图。大多数10Mbit/s集线器都拥有一个BNC端口。当集线器同时拥有BNC和RJ-45端口时,由于既可通过RJ-45端口与双绞线网络连接,又可通过BNC接口与细缆网络连接,因此,可实现双绞线和细同轴电缆两个采用不同通讯传输介质的网络之间的连接。这种双接口的特性可用于兼容原有的细同轴电缆网络(10Base-2),并可实现逐步向主流的双绞线网络(10Base-T)的过渡,当然还可实现与远程细同轴电缆网络(少于185米)之间的连接,下图5所示的是一种通过集线器所带有的BNC接口与双绞线RJ-45接口连接两种不同传输介质网络的网络连接示意图。同样,如果两个网络之间的距离大于100米,使用双绞线不能实现两个网络之间的连接时,这时也可以通过集线器的BNC端口利用细同轴电缆传输将两个输网络连接起来,而两个网络都可以仍采用双绞线这种廉价、常见的传输介质,如图6所示。不过要注意的是这两个网络之间的距离仍不能大于185m。(3)AUI端口AUI端口可用于连接粗同轴电缆的AUI接头,因此这种接口用于与粗同轴电缆网络的连接,它的示意图如图7所示,目前带有这种接口的集线器比较少,主要是在一些骨干级集线器中才具备。由于采用粗同轴电缆作为传输介质的网络造价较高,且布线较为困难,所以,实践中真正用于粗同轴电缆进行布线的情况已十分少见。不过,由于单段粗同轴电缆的(10Base-5)所支持的传输距离高达500米,因此,完全可以使用粗同轴电缆作为较远距离网络之间连接的通讯电缆。因此,也可以作为一种廉价的远程连接解决方案。连接图参照上图6所示,所不同的这里所采用的网络间的连接介质为粗同轴电缆。借助于收发器,AUI端口也可实现与RJ-45接口、BNC接口甚至光纤接口的连接。下图8所示的从左至右分别为:AUI to RJ-45收发器(用于实现AUI端口与RJ-45接口的连接)、AUI to BNC收发器(用于实现AUI端口与BNC接口的连接)、AUI to ST收发器(用于实现AUI端口与光纤接口的连接)。当然这种收发器种类还有许多,如RJ-45 to RS-232、RJ-45 to BNC等。不过千万不要小看这小小的玩意儿,猜一下其价格,我想多数情况下您是会把它看扁了,我第一次购买时也是怎么也想不通的这个价格的,但问了许多家(还真难找),我才明白我得接受这个价格事实。一般来说这种产品,正品的要130元左右,是不是出乎您的意料呢?这种转接口收发器主要品牌有:D-Link、HP等。这种产品起到一个接口类型转换的作用(当然不是电缆连接这么简单,需要通过一定电路来完成的),所以通常称之为转接器。(4)集线器堆叠端口这种端口当然是只有可堆栈集线器才具备的,它的作用也就是如它的名字一样,是用来连接两个可堆栈集线器的。一般来说一个可堆栈集线器中同时具有两个外观类似的端口:一个标注为UP,另一个就标注为DOWN,在连接时是用电缆从一个集线器的UP端口连接到另一个可堆集线器的DOWN端口上,都是母头,所以连接线端就必须都是公头了,不过这种连接线是购买可堆栈集线器时厂家就会为您提供的,如果损坏或丢失,也可直接在电脑城做一条,只要对商家讲明用途即可,端口示意图如下图9所示。2. 集线器的安装集线器的安装相对简单,尤其是傻瓜集线器,只要将其固定在配线柜并插上电源线即可。需要连接哪根双绞线,就把哪根双绞线的RJ-45头插入至集线器端口即可。智能集线器虽然也是固定好就能行使用,不过,如果想实现远程管理,就必须进行必要的配置,为集线器指定IP地址信息。另外在一些大的网络中一般都采用机架式集线器,这样就涉及到集线器的机架安装了。集线器从结构上来讲有机架式和桌机式的两种,一般部门用的集线器是采用桌面式;企业机房通常采用机架式。机架式集线器便于固定在一个固定的地方,一般是与其它集线器、交换机,还有的与服务器安装放在一个机柜中,这一样一来一则便于网络的连接与管理,同时也节省上设备所占用的空间。如果您在选购时所选购的是机架式的集线器时,您可以选配集线器机架(一般为厂家提供)。下面我们就来看一下机架式集线器的安装。机架式的集线器一般都是与其它设备一起安装在机柜中,这些机柜当然在业界都有相应的结构标准的,特别是在尺寸方面有严格的规定(如宽度,1U(单元)的高度等),这样所有设备都可以方便、美观地安装在一起,这就是为什么集线器里面空空的,却非要做得一样大的原因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广播电视台灯光音响师面试题集锦及解析
- 机电知识培训总结
- 课件丑小鸭教学课件
- 2025年高级地籍测量员面试重点题及答案库
- 课件pp客人投诉处理
- 2025年宠物训练师导盲犬笔试题库
- 2025年应急救援岗位面试重点题解析
- 2025年服装设计师创意表现能力测试试题及答案解析
- 2025年妇联招聘笔试冲刺模拟
- 2025年电子商务运营管理师认证考试试题及答案解析
- 2025海航航空食品(北京)有限公司招聘260人笔试参考题库附答案解析
- 2025至2030中国压力袜(弹性袜)行业项目调研及市场前景预测评估报告
- 房屋抵押的合同(标准版)
- 中国土地荒漠化课件
- 2025晋中祁县司法协理员招聘笔试备考试题及答案解析
- Unit 3 Same or DifferentSection A Grammar Focus (3a-3c) 课件-2025-2026学年人教版八年级英语上册
- 2025数据中心机房建设方案
- 管线及设备开启作业安全管理制度与操作流程
- GA/T 2160-2024法庭科学资金数据检验规程
- 完整解读新版《英语》新课标2022年《义务教育英语课程标准(2022年版)》PPT课件
- 2011版义务教育生物课程标准word版
评论
0/150
提交评论