![全等三角形复习课教案[1].doc_第1页](http://file.renrendoc.com/FileRoot1/2020-1/17/32bf3ab2-e204-4d70-8c93-9cd442012751/32bf3ab2-e204-4d70-8c93-9cd4420127511.gif)
![全等三角形复习课教案[1].doc_第2页](http://file.renrendoc.com/FileRoot1/2020-1/17/32bf3ab2-e204-4d70-8c93-9cd442012751/32bf3ab2-e204-4d70-8c93-9cd4420127512.gif)
![全等三角形复习课教案[1].doc_第3页](http://file.renrendoc.com/FileRoot1/2020-1/17/32bf3ab2-e204-4d70-8c93-9cd442012751/32bf3ab2-e204-4d70-8c93-9cd4420127513.gif)
全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11章全等三角形复习课教案学习目标:1了解图形的全等,掌握两个三角形全等的条件与性质。2能用三角形的全等和角平分线性质解决实际问题教学重点难点:1重点:掌握全等三角形的性质与判定方法2难点:对全等三角形性质及判定方法的运用教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。2)全等三角形性质:(1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等例1.已知如图(1),,其中的对应边:_与_,_与_,_与_,对应角:_与_,_与_,_与_.例2.如图(2),若.指出这两个全等三角形的对应边;若,指出这两个三角形的对应角。 (图1) (图2) ( 图3)例3如图(3), ,BC的延长线交DA于F,交DE于G, ,求、的度数.2.全等三角形的判定方法1)、三边对应相等的两个三角形全等 ( SSS )例1如图,在中,,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC.求证:DEAB。例2.如图,AB=AC,D、E分别是AB、AC的中点,,求证:BE=CD例3. 如图,在中,M在BC上,D在AM上,AB=AC , DB=DC 。求证:MB=MC2)两边和夹角对应相等的两个三角形全等( SAS )例4.如图,AD与BC相交于O,OC=OD,OA=OB,求证:3)、两角和夹边对应相等的两个三角形全等 ( ASA )例5.如图,梯形ABCD中,AB/CD,E是BC的中点,直线AE交DC的延长线于F求证:4)、两角和夹边对应相等的两个三角形全等 ( AAS )例6.如图,在中,AB=AC,D、E分别在BC、AC边上。且,AD=DE 求证:.5)、一条直角边和斜边对应相等的两个直角三角形全等 ( H L )例7.如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,则A的度数= 。3角平分线1)。角平分线性质定理:角平分线上的点到这个角两边的距离相等。逆定理: 到一个叫两边的距离相等的点在这个角的平分线上。例8(2006芜湖课改)如图,在中,平分,那么点到直线的距离是cm4尺规作图例2 如图,RtABC中,C=90, CAB=30, 用圆规和直尺作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省武威工程职业学校招聘模拟试卷及答案详解(夺冠)
- 2025年福建省泉州市晋江市农业农村局公开招聘1人考前自测高频考点模拟试题及一套参考答案详解
- 2025年衢州市卫生健康委员会“引才聚智‘医’起向未来”医疗卫生人才招聘78人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年山东省黄河三角洲农业高新技术产业示范区山东省师范类高校学生从业技能大赛一、二等奖获得者(13人)模拟试卷及答案详解(夺冠系列)
- 2025福建福州市闽清县招聘乡镇社会救助协管员2人考前自测高频考点模拟试题及完整答案详解
- 2025广东深圳市特区建工招聘模拟试卷及答案详解参考
- 2025广东阳春市高校毕业生就业见习招募31人(第三期)考前自测高频考点模拟试题及1套完整答案详解
- 2025贵州省第二人民医院第十三届贵州人才博览会引才招聘13人考前自测高频考点模拟试题及1套参考答案详解
- 2025湖南长沙市望城区卫健人才公开引进29人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年衢州市卫生健康委员会衢州市人民医院招聘编外人员20人模拟试卷附答案详解(黄金题型)
- 2025房屋宅基地买卖合同
- 高一物理力学知识点总结与测试题
- 广东省深圳市罗湖区2025-2026学年高三第一学期开学质量检测语文(含答案)
- 2025年南网春招笔试试题及答案
- 2025餐饮业简易劳动合同范本下载
- 基于PLC的果园灌溉施肥系统设计
- 南通蓝浦环评报告书
- 商户维护与管理办法
- 2025年武汉市中考英语试卷真题(含答案)
- 无人机清洗玻璃幕墙技术规范
- 浙江省舟山市2024-2025学年高二下学期6月期末物理+答案
评论
0/150
提交评论