




已阅读5页,还剩62页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 综合法 知识梳理 1 定义 从出发 利用定义 公理 定理及运算法则 通过 一步一步地接近要证明的 直到完成命题的证明 我们把这样的思维方法称为 2 框图表示 其中P表示已知条件 已有的定义 公理 定理等 Q表示要证明的结论 命题的条件 演绎推理 结论 综合法 2 分析法 1 定义 从出发 一步一步地探索保证前一个结论成立的 直到归结为这个命题的条件 或者归结为定义 公理 定理等 我们把这样的思维方法称为 求证的结论 充分条件 分析法 3 反证法 我们可以先假定命题结论的 在这个前提下 若推出的结果与定义 公理 定理相矛盾 或与命题中的已知条件相矛盾 或与假定相矛盾 从而说明命题结论的反面不可能成立 由此断定命题的结论成立 这种证明方法叫作反证法 反证法的证题步骤是 1 作出否定结论的假设 2 进行推理 导出 3 否定假设 肯定 反面成立 矛盾 结论 判断下列结论是否正确 请在括号中打 或 1 综合法是直接证明 分析法是间接证明 2 分析法是从要证明的结论出发 逐步寻找使结论成立的充要条件 3 用反证法证明结论 a b 时 应假设 a b 4 反证法是指将结论和条件同时否定 推出矛盾 5 在解决问题时 常常用分析法寻找解题的思路与方法 再用综合法展现解决问题的过程 考点自测 1 若a b c为实数 且a b 0 则下列命题正确的是 答案 解析 a2 ab a a b a0 a2 ab 又ab b2 b a b 0 ab b2 由 得a2 ab b2 2 用反证法证明命题 a b N 若ab不能被5整除 则a与b都不能被5整除 时 假设的内容应为A a b都能被5整除B a b不都能被5整除C a b至少有一个能被5整除D a b至多有一个能被5整除 答案 解析 都不能 的否定为 至少有一个能 故假设的内容应为 a b至少有一个能被5整除 a2 b2 1 a2b2 0 a2 1 b2 1 0 答案 解析 a 0 b 0且a b 答案 解析 答案 解析 f x sinx在区间 0 上是凸函数 且A B C 0 题型分类深度剖析 题型一综合法的应用 例1数列 an 满足an 1 a1 1 证明 证明 1 综合法是 由因导果 的证明方法 它是一种从已知到未知 从题设到结论 的逻辑推理方法 即从题设中的已知条件或已证的真实判断 命题 出发 经过一系列中间推理 最后导出所要求证结论的真实性 2 综合法的逻辑依据是三段论式的演绎推理 思维升华 跟踪训练1若a b c是不全相等的正数 求证 证明 a b c 0 由于a b c是不全相等的正数 上述三个不等式中等号不能同时成立 题型二分析法的应用 证明 所以cosx1cosx2 0 sin x1 x2 0 1 cos x1 x2 0 故只需证明1 cos x1 x2 2cosx1cosx2 即证1 cosx1cosx2 sinx1sinx2 2cosx1cosx2 即证cos x1 x2 1 引申探究 证明 由于x1 x2 R时 0 0 1 逆向思考是用分析法证题的主要思想 通过反推 逐步寻找使结论成立的充分条件 正确把握转化方向是使问题顺利获解的关键 2 证明较复杂的问题时 可以采用两头凑的办法 即通过分析法找出某个与结论等价 或充分 的中间结论 然后通过综合法证明这个中间结论 从而使原命题得证 思维升华 跟踪训练2 2016 重庆月考 设a 0 b 0 2c a b 求证 1 c2 ab 证明 证明 a c 2 c2 ab a a b 2c 0成立 原不等式成立 题型三反证法的应用 命题点1证明否定性命题例3 2016 西安模拟 设 an 是公比为q的等比数列 1 推导 an 的前n项和公式 解答 设 an 的前n项和为Sn 当q 1时 Sn a1 a1 a1 na1 当q 1时 Sn a1 a1q a1q2 a1qn 1 qSn a1q a1q2 a1qn 得 1 q Sn a1 a1qn 2 设q 1 证明 数列 an 1 不是等比数列 证明 a1 0 2qk qk 1 qk 1 q 0 q2 2q 1 0 q 1 这与已知矛盾 假设不成立 故 an 1 不是等比数列 假设 an 1 是等比数列 则对任意的k N ak 1 1 2 ak 1 ak 2 1 命题点2证明存在性问题例4已知四棱锥S ABCD中 底面是边长为1的正方形 又SB SD SA 1 证明 1 求证 SA 平面ABCD 由已知得SA2 AD2 SD2 SA AD 同理SA AB 又AB AD A AB 平面ABCD AD 平面ABCD SA 平面ABCD 2 在棱SC上是否存在异于S C的点F 使得BF 平面SAD 若存在 确定F点的位置 若不存在 请说明理由 解答 假设在棱SC上存在异于S C的点F 使得BF 平面SAD BC AD BC平面SAD BC 平面SAD 而BC BF B 平面FBC 平面SAD 这与平面SBC和平面SAD有公共点S矛盾 假设不成立 不存在这样的点F 使得BF 平面SAD 命题点3证明唯一性命题例5已知a 0 证明关于x的方程ax b有且只有一个根 证明 假设x1 x2是它的两个不同的根 即ax1 b ax2 b 由 得a x1 x2 0 因为x1 x2 所以x1 x2 0 所以a 0 这与已知矛盾 故假设错误 所以当a 0时 方程ax b有且只有一个根 应用反证法证明数学命题 一般有以下几个步骤 第一步 分清命题 p q 的条件和结论 第二步 作出与命题结论q相反的假设綈q 第三步 由p和綈q出发 应用正确的推理方法 推出矛盾结果 第四步 断定产生矛盾结果的原因在于开始所作的假设綈q不真 于是原结论q成立 从而间接地证明了命题p q为真 所说的矛盾结果 通常是指推出的结果与已知公理 已知定义 已知定理或已知事实矛盾 与临时假设矛盾以及自相矛盾等都是矛盾结果 思维升华 跟踪训练3已知二次函数f x ax2 bx c a 0 的图像与x轴有两个不同的交点 若f c 0 且00 证明 f x 的图像与x轴有两个不同的交点 f x 0有两个不等实根x1 x2 f c 0 x1 c是f x 0的根 证明 典例 12分 直线y kx m m 0 与椭圆W y2 1相交于A C两点 O是坐标原点 1 当点B的坐标为 0 1 且四边形OABC为菱形时 求AC的长 2 当点B在W上且不是W的顶点时 证明 四边形OABC不可能为菱形 反证法在证明题中的应用 思想与方法系列23 思想方法指导 规范解答 在证明否定性问题 存在性问题 唯一性问题时常考虑用反证法证明 应用反证法需注意 1 掌握反证法的证明思路及证题步骤 正确作出假设是反证法的基础 应用假设是反证法的基本手段 得到矛盾是反证法的目的 2 当证明的结论和条件联系不明显 直接证明不清晰或正面证明分类较多 而反面情况只有一种或较少时 常采用反证法 3 利用反证法证明时 一定要回到结论上去 返回 1 解因为四边形OABC为菱形 则AC与OB相互垂直平分 由于O 0 0 B 0 1 2 证明假设四边形OABC为菱形 因为点B不是W的顶点 且AC OB 所以k 0 设A x1 y1 C x2 y2 则 因为M为AC和OB的交点 且m 0 k 0 所以OABC不是菱形 与假设矛盾 所以当点B不是W的顶点时 四边形OABC不可能是菱形 12分 返回 课时作业 1 2017 泰安质检 用反证法证明命题 设a b为实数 则方程x2 ax b 0至少有一个实根 时 要做的假设是A 方程x2 ax b 0没有实根B 方程x2 ax b 0至多有一个实根C 方程x2 ax b 0至多有两个实根D 方程x2 ax b 0恰好有两个实根 答案 解析 因为 方程x2 ax b 0至少有一个实根 等价于 方程x2 ax b 0有一个实根或两个实根 所以该命题的否定是 方程x2 ax b 0没有实根 故选A 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 A 3 0 B 3 0 C 3 0 D 3 0 解得 3 k 0 当且仅当x y z时等号成立 A 都大于2B 至少有一个大于2C 至少有一个不小于2D 至少有一个不大于2 所以三个数中至少有一个不小于2 故选C 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 4 已知p3 q3 2 证明 p q 2 用反证法证明时 可假设p q 2 若a b R a b 1 求证 方程x2 ax b 0的两根的绝对值都小于1 用反证法证明时可假设方程有一根x1的绝对值大于或等于1 即假设 x1 1 以下结论正确的是A 与 的假设都错误B 的假设正确 的假设错误C 与 的假设都正确D 的假设错误 的假设正确 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 对于 结论的否定是p q 2 故 中的假设错误 对于 其假设正确 故选D A 都不大于 2B 都不小于 2C 至少有一个不大于 2D 至少有一个不小于 2 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 6 用反证法证明 若整系数一元二次方程ax2 bx c 0 a 0 有有理数根 那么a b c中至少有一个是偶数 用反证法证明时 下列假设正确的是 假设a b c都是偶数 假设a b c都不是偶数 假设a b c至多有一个偶数 假设a b c至多有两个偶数 答案 解析 至少有一个 的否定为 都不是 故 正确 7 2016 全国甲卷 有三张卡片 分别写有1和2 1和3 2和3 甲 乙 丙三人各取走一张卡片 甲看了乙的卡片后说 我与乙的卡片上相同的数字不是2 乙看了丙的卡片后说 我与丙的卡片上相同的数字不是1 丙说 我的卡片上的数字之和不是5 则甲的卡片上的数字是 答案 解析 1和3 1 2 3 4 5 6 7 8 9 10 11 12 13 由丙说 我的卡片上的数字之和不是5 可知 丙为 1和2 或 1和3 又乙说 我与丙的卡片上相同的数字不是1 所以乙只可能为 2和3 又甲说 我与乙的卡片上相同的数字不是2 所以甲只能为 1和3 1 2 3 4 5 6 7 8 9 10 11 12 13 若二次函数f x 0在区间 1 1 内恒成立 8 若二次函数f x 4x2 2 p 2 x 2p2 p 1 在区间 1 1 内至少存在一点c 使f c 0 则实数p的取值范围是 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 因为m 0 所以1 m 0 所以要证原不等式成立 只需证 a mb 2 1 m a2 mb2 即证m a2 2ab b2 0 即证 a b 2 0 而 a b 2 0显然成立 故原不等式得证 由函数f x 1 与f x 的图像关于y轴对称 可知f x 1 f x 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 1 证明 函数f x 在 1 上为增函数 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 任取x1 x2 1 不妨设x10 a 1 1且ax1 0 0 又 x1 1 0 x2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 故函数f x 在 1 上为增函数 1 2 3 4 5 6 7 8 9 10 11 12 13 2 用反证法证明方程f x 0没有负数根 证明 假设存在x0 0 x0 1 满足f x0 0 a 1 0 ax0 1 故方程f x 0没有负数根 1 2 3 4 5 6 7 8 9 10 11 12 13 1 f x 1 x x2 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 证明 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 13 2015 课标全国
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年末交通安全培训课件
- 子曰养而亲不待课件
- 年度安全教育培训小结课件
- 娱乐主播招募课件
- 威尼斯的课件
- 重庆省考真题2025
- 2024年湖南郴州市宜章县事业单位招聘考试真题
- 威尼斯的小艇课件
- 平顺交通安全培训课件
- 工业安全生产培训内容课件
- 卫生监督协管五项制度范文(4篇)
- 洗车机施工方案
- 电瓶搬运车安全培训课件
- 工程弃土处置方案(3篇)
- 老年人安全防范措施课件
- 民法典买租赁合同课件
- 《铁路技术管理规程》(普速铁路部分)
- 新苏教版三年级上册科学全册教案
- Q-RJ 557-2017 航天型号产品禁(限)用工艺目录(公开)
- JIS C62133-2-2020 便携式密封二次电池及其电池的安全要求 第2部分:锂系统
- TIPAP患者再次申请表
评论
0/150
提交评论