已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17章 量子物理基础17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比解答玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为,对于第一激发态,n = 2,所以L5/L2 = 5/217.2设有原子核外的3p态电子,试列出其可能性的四个量子数解答 对于3p态电子,主量子数为n = 3,角量子数为 l = 1,磁量子数为 ml = -l, -(l - 1), , l -1, l,自旋量子数为 ms = 1/23p态电子的四个可能的量子数(n,l,ml,ms)为(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) 17.3 实验表明,黑体辐射实验曲线的峰值波长m和黑体温度的乘积为一常数,即mT = b = 2.89710-3mK实验测得太阳辐射波谱的峰值波长m = 510nm,设太阳可近似看作黑体,试估算太阳表面的温度解答太阳表面的温度大约为= 5680(K)17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M(即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = T4,其中 =5.6710-8Wm-2K-4试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题)解答太阳单位表面积的辐射功率大约为M = 5.6710-8(5680)4 = 5.9107(Wm-2)17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K黑体辐射求:(1)此辐射的单色辐射强度在什么波长下有极大值?(2)地球表面接收此辐射的功率是多少?解答(1)根据公式mT = b,可得辐射的极值波长为m = b/T = 2.89710-3/3 = 9.6610-4(m)(2)地球的半径约为R = 6.371106m,表面积为 S = 4R2根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = T4,因此地球表面接收此辐射的功率是P = MS = 5.6710-8344(6.371106)2= 2.34109(W) 17.6 铝表面电子的逸出功为6.7210-19J,今有波长为 = 2.010-7m的光投射到铝表面上试求:(1)由此产生的光电子的最大初动能;(2)遏止电势差;(3)铝的红限波长解答(1)光子的能量为E = h = hc/,根据爱因斯坦光电效应方程h = Ek + A,产生的光电子的最大初动能为Ek = h - A= 6.6310-343108/2.010-7-6.7210-19= 3.2310-19(J)(2)遏止电势差的公式为eUs = Ek,遏止电势差为Us = Ek/e = 3.2310-19/1.610-19=2.0(V)(3)铝的红限频率为0 = A/h,红限波长为0 = c/0 = hc/A= 6.6310-343108/6.7210-19= 2.9610-7(m) 17.7 康普顿散射中入射X射线的波长是 = 0.7010-10m,散射的X射线与入射的X射线垂直求:(1)反冲电子的动能EK;(2)散射X射线的波长;(3)反冲电子的运动方向与入射X射线间的夹角解答(1)(2)根据康普顿散射公式得波长变化为= 2.42610-12(m),散射线的波长为 = + = 0.7242610-10(m)反冲电子的动能为= 9.5210-17(J) h/ph/(3)由于,所以夹角为 = 44117.8 求波长分别为1 = 7.010-7m的红光;2 = 0.2510-10m的X射线的能量、动量和质量解答X射线的能量为E = h = hc/,动量为 p = h/;由E = hc/ = mc2,得其质量为m = h/c对于红光来说,能量为= 2.8410-19(J),动量为= 9.4710-25(kgms-1),质量为= 3.1610-36(kg)对于X射线来说,能量为= 7.95610-15(J),动量为= 2.65210-23(kgms-1),质量为= 8.8410-32(kg)17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长解答第四激发态的氢原子处于第5个能级,最多可发射四个线系(1)能级5到4,1条谱线;(2)能级5和4到3,2条谱线;(3)能级5、4和3到2,3条谱线;(3)能级5、4、3和2到1,4条谱线共10条谱线从能级5跃迁到4发射的光谱频率最小,波长最长17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量解答氢原子能级公式为,当n=1时,基态能级的能量为-2.1810-18(J) = -13.6(eV),因此 当电子从n能级跃迁到m能级时放出(正)或吸收(负)光子的能量为电离时,m趋于无穷大当电子从n = 2的能级电离时要吸收能量 = -3.4(eV),因此需要3.4eV的能量17.11 质量为m的卫星,在半径为r的轨道上环绕地球运动,线速度为v(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn2,(式中K是比例常数);(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.6310-34Js,地球质量M = 61024kg,地球半径R = 6.4103km,万有引力常数G = 6.710-11Nm2kg-2解答(1)卫星绕地球运动的向心力是万有引力;根据玻尔理论,角动量为mvr = nh/2将前式乘以mr3得,所以 ,即:卫星的轨道半径与量子数的平方成正比(2)假设卫星质量m = 100kg,比例系数为= 2.7710-87可见:比例系数很小当r = R时,地球表面的量子数为可见:地球表面处的量子数很大地面以上的量子数设为n,(n = 1,2,3,),则总量子数可表示为两个量子数之和:n =n0 + n轨道间的距离为r = K(n0 + n + 1)2 - (n0 + n)2= K2(n0 + n) + 1由于n01,所以r = 2Kn0 + 2Kn设n = kn0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n0,则r = Kn02(k + 1)2,r = 2Kn0(k + 1) = 2.6610-40(k + 1)这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于r的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的 17.12 电子和光子各具有波长2.010-10m,它们的动量和总能量各是多少?解答它们的动量都为= 3.31510-24(kgms-1)根据公式E2 = p2c2 + m02c4,电子的总能量为=3108(3.31510-24)2 + (9.110-313108)21/2=8.1910-14(J)光子的静止质量为零,总能量为E = cp = 31083.31510-24 = 9.94510-16(J)17.13 室温下的中子称为热中子T = 300K,试计算热中子的平均德布罗意波长 解答中子热运动的平均速度为其中k为玻尔兹曼常数k = 1.3810-23JK-1,mp是电子的质量mp = 1.67510-27kg,可得平均速度为 = 2.509104(ms-1),平均动量为 = 4.210-27(kgms-1)平均德布罗意波长为= 1.5810-10(m) = 0.158(nm)17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一屏,屏上电子衍射图样中央最大的宽度是多少?解答根据动量和位置的不确定关系pxxh,其中位置不确定量为x = a,动量的不确定量为px = psin设电子衍射图样的中央最大半宽度为w,则 sin = w/R,可得,宽度为注意如果将h改为/2,则宽度为2wR/pa两者相差很小17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少? 解答粒子坐标的不确定范围是xa,动量的不确定范围是 ph/xh/a这也就是动量p的范围因此能量为 E = p2/2m h2/2ma2,最低能量可估计为Emin = h2/2ma217.16 设有一宽度为a的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a/3之间找到粒子的几率? 解答粒子在一维无限深势阱中的定态波函数为, (x) = 0,(x a)当粒子处于第一激发态时,n = 2,在x = 0至x = a/3之间被发现的几率为= 0.39117.17 设粒子在宽度为a的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式解答当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长的整数倍,即 n(/2) = a,(n = 1,2,3,)根据德布罗意假设 = h/p,可得粒子的动量为能量为 17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量(1)该粒子质量为510-3kg,以2ms-1的速度运动;(2)该粒子是速度为1.8108ms-1的电子解答粒子的动量为 p = mv,动量的不确定量为 p = p/1000,根据动量和位置的不确定关系px/2,位置的不确定量为 x = /2p(1)= 5.27610-30(m)(2)= 3.2210-10(m)17.19设有某线性谐振子处于第一激发态,其波函数为式中,k为常数,则该谐振子在何处出现的概率最大?解答第一激发态的概率为,对x求导得, 令dw/dt = 0,得概率最大的位置为x = 1/a 17.20一维运动的粒子,处于如下的波函数所描述的状态式中 0,A为常数(1)将此波函数归一化;(2)求粒子位置的概率分布函数;(3)粒子在在何处出现的概率最大?解答(1)归一化得,所以A =23/2 归一化波函数为(注利用函数的性质可简化积分过程,当n为整数时,(n) = (n - 1)!设y = 2x,则dx = dy/2,可得,可以得出同一结果)(2)粒子坐标的几率分布函数为(3)利用上一题的方法求导可得几率最大的位置为x = 1/17.21 设有某一维势场如下:该势场可称为有限高势阱,设粒子能量E V0,求E所满足的关系式解答粒子运动的薛定谔方程为在三个区域的方程为设,则得 (1) (2) (3)方程的通解为1(x) = A1exp(k1x) + B1exp(-k1x),(x0);(4)2(x) = A2cos(k2x) + B2sin(k2x),(0xL)(6)当x-时,1有限,所以B1 = 0;当x时,3有限,所以A3 = 0当x = 0时,1(0) = 2(0),可得 A1 = A2; (7)同时1(0) = 2(0),可得 k1A1 = k2B2 (8)当x = L时,2(L) = 3(L),2(L) = 3(L),可得A2cosk2L + B2sink2L = B3exp(-k1L);(9)-k2A2sink2L + k2B2cosk2L= -k1B3exp(-k1L)(10)将(9)乘以k1加(10)得k1A2cosk2L + k1B2sink2L-k2A2sink2L + k2B2cosk2L = 0即 (k1A2 + k2B2)cosk2L = (k2A2 - k1B2)sink2L,亦 (11)由(7)和(8)得k1A2 =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TR 62595-1-6:2025 EN Display lighting unit - Part 1-6: Quantum dot films and quantum dot diffuser plates used in backlight unit
- 浙江中烟工业2025年下半年校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 代收快递的合同范本
- 河北公安警察职业学院2025事业单位招聘拟聘易考易错模拟试题(共500题)试卷后附参考答案
- 江西九江市修水县部分县直机关下属事业单位选调易考易错模拟试题(共500题)试卷后附参考答案
- 借用信用卡合同范本
- 公司换部门合同范本
- 公司委托催收协议书
- 广州市人社局2025年下半年第二期招考事业单位工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 公司提前分红协议书
- 中铁建云网科技(贵州)有限公司招聘笔试题库2025
- 2025年赣州市公共资源交易中心招聘编外工作人员5人考试笔试备考试题及答案解析
- 2025民航招飞英语测试题及答案解析
- 电力营销安全教育课件
- DB3208∕T 216-2024 机关中央空调系统运行管理规范
- 光伏电池板清洗维护项目分析方案
- 跨境电商的财务知识培训课件
- 知识管理规范化手册
- 琴行学员合同(标准版)
- 2025年哈市冰城骨干教师考试试题及答案
- 2025年中级政工师考前通关必练题库
评论
0/150
提交评论