专题4 风力发电.doc_第1页
专题4 风力发电.doc_第2页
专题4 风力发电.doc_第3页
专题4 风力发电.doc_第4页
专题4 风力发电.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题4 风力发电4.1 风力发电机系统两大核心系统:风力机系统 发电机系统一个灵魂: 系统控制器风力机系统:桨叶,轮毂,主轴,调桨机构(液压或电动伺服机构)、偏航机构(电动伺服机构)、刹车、制动机构、风速传感器。发电机系统:发电机,励磁调节器(电力电子变换器),并网开关,软并网装置,无功补偿器,主变压器,转速传感器。图4.1为水平轴式风力发电装置结构图:图4.1水平轴式风力发电装置结构图4.2 风力发电机组分类 1. 按风轮桨叶分类失速型:高风速时,因桨叶形状或因叶尖处的扰流器动作,限制风力机的输出转矩与功率;变桨型:高风速时,调整桨距角,限制输出转矩与功率。2. 按风轮转速分类定速型:风轮保持一定转速运行,风能转换率较低;变速型:包括以下两种方式双速:可在两个设定转速下运行,改善风能转换率;连续变速:连续可调,可捕捉最大风能功率。3. 按传动机构分类升速型:用齿轮箱连接低速风力机和高速发电机。直驱型:将低速风力机和低速发电机直接连接。4. 按发电机分类异步型:笼型单速异步发电机、笼型双速变极异步发电机;绕线式异步发电机。同步型:电励磁同步发电机;永磁同步发电机。5. 按并网方式分类并网型:直接或间接并入电网,可省却储能环节。离网型:需配储能环节,也可与柴发、光伏并联运行。按功率调节方式分:定桨距(失速型)、变桨距按叶轮转速是否恒定分: 恒速发电机、变速发电机 其它机型:主动失速型、无齿轮箱型水平轴式:图4.2 水平轴式桨叶与桨叶方案 风轮旋转平面与风向垂直 叶片径向安装,与风轮旋转平面成一角度 大型风力机叶片数少,转速高,用于发电 小型风力机叶片数多,转速低,用于提水 4.3 水平轴式风力机垂直轴式:利用空气动力的阻力做功启动转矩较大风轮产生不对称气流,受侧向推力风能利用系数低,提供的功率较低, 不宜用作发电4.4 垂直式桨叶 4.5 简单风力发电系统原理图4.3 风力发电机4.31 恒速恒频风力发电机系统:1. 分类(1)同步发电机系统(2)笼型异步发电机系统(3)绕线转子RCC异步发电机系统2. 同步风力发电机的并网条件: 发电机输出的三相交流电压与电网电压应满足四同条件,即:“同相序、同幅值、同频率、同相位”。同相序:由正确的旋转方向保证同幅值:由励磁调节器自动保证同频率:由调速器保证,桨距调节可用作并网调速器同相位:由调速器微调实现3. 同步风力发电机系统的主要问题:(1)并网问题:并网控制复杂,对调速器要求过高,并网过程长,成功率较低,冲击电流不易控制,不适合于频繁脱、并网的风力发电机。(2)运行问题:转子转速受电网频率的钳制,发电机呈现刚性机械特性。转子受到的冲击应力大,电磁功率波动快,风力机的风能转换率偏低。(3)过载问题:高风速时,对变桨调节的动态响应要求高,无法利用转子惯量缓冲。留给过速保护的响应时间太短。 因此恒速恒频同步风力发电机系统极少被采用!4. 笼型异步风力发电机的工作原理旋转磁场(1)向对称三相绕组中通入对称三相交流电流,可形成行波磁场;(2)如果绕组分布在圆周上,则行波磁场为旋转磁场;(3)旋转磁场在一个圆周内,呈现出的磁极(N、S极)数目称为极数,用2p表示。(4)旋转磁场的转向取决于三相电流的相序,转速n1取决于电流的频率f 和极对数p。5. 笼型异步风力发电机的工作原理电磁感应(1)定子三相电流产生旋转磁场,以同步转速n1 旋转(2)旋转磁场在转子导条中产生感应电动势e 和电流i (3)i 在磁场中受力f,产生电磁转矩T(4)若转子以转速nn1, 向n1的方向旋转, T 为制动转矩转差率: 同步转速n1与转子转速 n 的差与同步转速n1的比值,称为转差率,用s表示。6. 笼型异步风力发电机系统的特点:(1)无功补偿:发电机励磁消耗无功功率,皆取自电网。应选用较高功率因数发电机,并在机端并联电容;(由于负荷经常变动,固定电容难以做到完全补偿。可能出现过补或欠补现象,造成电网电压浮动。可考虑在变电站加装可控无功补偿装置SVC)。(2)软并网: 并网瞬间与异步电动机起动相似,存在很大的冲击电流,应在接近同步转速时并网,并加装可控硅软起动限流装置;(3)过载能力:发电机的机械特性曲线较硬,允许转子转速变动范围小,导致风力机的风能转换率偏低。风速不稳时,风电机组容易受到冲击机械应力;(软特性发电机的转子损耗较大,发热严重)(4)高效轻载:绝大部分时间处于轻载状态,要求发电机的效率曲线平坦,在中低负载区效率较高。可考虑在轻载区,将定子绕组由角接改为星接,降低铁耗。7. 笼型双速异步风力发电机系统的特点(1)变极双速笼型异步风力发电机方案在同一台发电机的定子铁心中,埋设两套不同极对数的电枢绕组(通常为4/6极)。根据需要,可在两套绕组切换,以获得合适的运行转速。高速绕组角接,低速绕组星接,以降低轻载运行时的铁心磁密和损耗。(2)大、小电机方案: 采用两台不同容量、不同极对数的单速笼型异步发电机同轴串联。高速发电机角接,低速发电机绕组星接。根据需要,可在两套绕组切换。与变极双速方案相比,小电机的负荷率较高,发电效率更高。4.32 变速恒频风力发电机系统:1. 变速恒频笼型异步风力发电机系统分类:(1)变速恒频鼠笼异步发电机系统(高速)(2)变速恒频双馈异步发电机系统(高速)(3)变速恒频电励磁同步发电机系统(中、低速)(4)变速恒频永磁同步发电机系统(中、低速)(5)变速恒频横向磁通发电机系统(中、低速)2. 变速恒频双馈异步风力发电机系统特点:(1)交直交变频器使发电机转速与电网频率间的关联解耦;笼型异步风力发电机运行于变速变频发电状态;可利用发电机的电磁转矩控制风力机转子的转速,跟踪其最大功率点。发电机的运行转差率小,发电机机械特性硬,运行效率高;(2)发电机侧变频器运行于升压整流状态,机端电压可调,轻载运行时发电机的铁耗小、效率高;(3)电网侧变频器运行于逆变状态,将发电机发出的有功传送至电网,并可作为无功发生器参与调节电网无功;对电网波动的适应性好,可以将电网的波动屏蔽于发电机之外;(4)变频器与发电机功率容量相等,系统成本高。3. 双馈异步发电机的运行原理 转子交流励磁(1)转子电流的频率为转差频率,跟随转子转速变化;(2)通过调节转子电流的相位,控制转子磁场领先于由电网电压决定的定子磁场,从而在转速高于和低于同步转速时都能保持发电状态;(3)通过调节转子电流的幅值,可控制发电机定子输出的无功功率;(4)转子绕组参与有功和无功功率变换,为转差功率,容量与转差率有关(约为电磁功率的0.3倍,|s|0.3)4. 双馈异步发电机系统特点:(1)连续变速运行,风能转换率高;(2)部分功率变换,变频器成本相对较低;(3)电能质量好(输出功率平滑,功率因数高);(4)并网简单,无冲击电流;(5)降低桨距控制的动态响应要求;(6)改善作用于风轮桨叶上机械应力状况;(7)双向变频器结构和控制较复杂;(8)电刷与滑环间存在机械磨损。5. 变速恒频电励磁同步发电机系统(中、低速)(1)连续变速运行,风能转换率高;(2)通过调节转子励磁电流,可保持发电机的端电压恒定;(3)可采用不控整流和PWM逆变,成本低于全功率变换;(4)电能质量好,并网简单,无冲击电流;(5)降低桨距控制的动态响应要求,改善桨叶上机械应力状况;(6)转子可采用无刷旋转励磁;(7)转子结构复杂,励磁消耗电功率;(8)体积大、重量重,效率稍低。6. 变速恒频永磁同步发电机系统(中、低速)系统特点:(1)连续变速运行,风能转换率高,可降低桨距控制的动态响应要求,改善桨叶上机械应力状况;(2)具有最高的运行效率;(3)励磁不可调,感应电动势随转速和负载变化。采用可控PWM整流或不控整流后DC/DC变换,可维持直流母线电压基本恒定,同时还可控制发电机电磁转矩以调节风轮转速;(4)在电网侧采用PWM逆变器输出恒定频率和电压的三相交流电,对电网波动的适应性好;(5)永磁发电机体积大、重量重,成本高;全容量全控变流器控制复杂,成本高;(6)永磁发电机存在定位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论