




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的面积课 题:平行四边形的面积 教学时间:2114年11月24日授 课 人:强小龙教学目标: 1.使学生在理解的基础上掌握平行四边形面积的计算公式。2.并会运用公式正确地 计算平行四边形的面积。3. 通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法 解决问题的能力和逻辑思维。 对学生进行辩诈唯物主义观点的启蒙教育。 教学重点:理解公式并正确计算平行四边形的面积。 教学难点: 理解平行四边形面积公式的推导过程。 教学过程:一、创境激疑(一)提问:1、我们学过哪些图形?什么是面积?我们学过哪些图形的面积? 2、请观察这两个花坛,哪一个大呢?假如这块长方形花坛 的长是 3 米,宽是 2 米,怎样计算它的面积呢?(二)导入新课 根据长方形的面积=长宽(板书) ,得出长方形花坛的 面积是 6 平方米,平行四边形面积我们还没有学过,所以 不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。 二、讲授新课 (一) 、数方格法 用展示台出示方格图1、 这是什么图形?(长方形)如果每个小方格代表 1 平 方厘米,这个长方形的面积是多少?(18 平方厘米) 2、这是什么图形?(平行四边形)每一个方格表示 1 平方 厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数 得的结果,并说一说是怎样数的。 2、请同学看方格图填 87 页最下方的表,填完后请学生回答发现了什么? 小结: 如果长方形的长和宽分别等于平行四边形的底和高, 则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、 平行四边形的零件等等 平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 1、 这是一个平行四边形,请同学们把自己准备的平行四 边形沿着所作的高剪下来,自己拼一下,看可以拼成我们 以前学过的什么图形? 2、 然后指名到前边演示。 3、教师示范平行四边形转化成长方形的过程。 刚才发现同学们把平行四边形转化成长方形时,就把从平 行四边形左边剪下的直角三角形直接放在剩下的梯形的右 边,拼成长方形。在变换图形的位置时,怎样按照一定的 规律做呢?现在看老师在黑板上演示。 先沿着平行四边形的高剪下左边的直角三角形。 左手按住剩下的梯形的右部,右手拿着剪下的直角三角 形沿着底边慢慢向右移动。 移动一段后,左手改按梯形的左部。右手再拿着直角三 角形继续沿着底边慢慢向右移动,到两个斜边重合为止。 请同学们把自己剪下来的直角三角形放回原处,再沿着平 行四边形的底边向右慢慢移动,直到两个斜边重合。 (教师 巡视指导。 ) 4、观察(黑板上在剪拼成的长方形左面放一个原来的平行 四边形,便于比较。 ) 这个由平行四边形转化成的长方形的面积与原来的平行 四边形的面积比较,有没有变化?为什么? 这个长方形的长与平行四边形的底有什么样的关系?这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、 宽分别和原来的平行四边形的底、高相等。 5、引导学生总结平行四边形面积计算公式。 这个长方形的面积怎么求?(指名回答后,在长方形右面 板书:长方形的面积长宽) 那么,平行四边形的面积怎么求?(指名回答后,在平行 四边形右面板书:平行四边形的面积底高。 ) 6、教学用字母表示平行四边形的面积公式。 板书:Sah, 说明在含有字母的式子里,字母和字母中间的乘号可以记 作“ ” ,写成 ah,也可以省略不写,所以平行四边形面 积的计算公式可以写成 Sah,或者 Sah。 (6)完成第 88 页中间的“填空” 。 7、验证公式 学生利用所学的公式计算出“方格图中平行四边形的 面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。 条件强化: 求平行四边形的面积必须知道哪两个条件? (底 和高) 判断,并说明理由。 拓展应用 (1)两个平行四边形的高相等,它们的面积就相等( (2)平行四边形底越长,它的面积就越大( 总 结 ) )今天, 你学会了什么?怎样求平行四边形的面积?平行四边 形的面积计算公式是怎样推导的?作业布置练习十五第 1 题。 平行四边形面积的计算长方形的面积长宽 板书设计平行四边形的面积底高 S= a h S= a h=ah 或 s=ah_教学札记课题 课型 知识 目标 能力 目标 情感 目标 重点 难点 教学过程 目标导学 新授课三角形面积的计算 备课人 田雨新 执教时间 11 月 19 日教 学 目 标理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算 培养学生观察能力、动手操作能力和类推迁移的能力 培养学生勤于思考,积极探索的学习精神 理解三角形面积计算公式,正确计算三角形的面积 理解三角形面积公式的推导过程 教 学 预 设 个 性 修 改个体思考-合作探究-展示交流反思小结-检查测评 -巩固练习。 一、激发:1出示平行四边形 1.5 厘米厘米 提问: (1)这是什么图形? 怎样计算平行四边形的面积。 (板书:平行四边形面积底高) 创境激疑 (2)底是 2 厘米,高是 1.5 厘米,求它的面积。 (3)平行四边形面积的计算公式是怎样推导的? 2出示三角形。三角形按角可以分为哪几种? 3既然平行四边形都可以利用公式计算的方法,求 它们的面积,三角形面积可以怎样计算呢?(揭示课题:三 角形面积的计算) 教师:今天我们一起研究“三角形的面积” (板书) 二、指导探索 合作探究 (一)推导三角形面积计算公式 1拿出手里的平行四边形,想办法剪成两个三角形,并比_较它们的大小 2启发提问:你能否依照平行四边形面积的方法把三角形 转化成已学过的图形,再计算面积呢? 3用两个完/b-b70ebea4fab069dc502201bb.html全一样的直角三角形拼 (1)教师参与学生拼摆,个别加以指导 (2)演示课件:拼摆图形 (3)讨论 两个完全一样的直角三角形拼成一个大三角形能帮助我 们推导出三角形面积公式吗?为什么? 观察拼成的长方形和平行四边形,每个直角三角形 的面积与拼成的平行 四边形的面积有什么关系? 4用两个完全一样的锐角三角形拼 (1)组织学生利用手里的学具试拼 (指名演示) (2)演示课件:拼摆图形(突出旋转、平移) 教师提问:每个三角形的面积与拼成的平行四边形的 面积有什么关系? 5用两个完全一样的钝角三角形来拼 (1)由学生独立完成 (2)演示课件:拼摆图形 6讨论: (1)两个完全相同的三角形都可以转化成什么图形?(2) 每个三角形的面积与拼成的平行四边形的面积有什么 关系? (3)三角形面积的计算公式是什么? 7、引导学生明确: 两个完全一样的三角形都可以拼成一个平行四边形。 每个三角形的面积等于拼成的平行四边形面积的一半。 (同时板书) 这个平行四边形的底等于三角形的底。 (同时板书) 这个平行四边形的高等于三角形的高。 (同时板书) (3)三角形面积的计算公式是怎样推导出来的?为什么_要加上“除以 2”?(强化理解推导过程) 板书:三角形面积底高2 (4)如果用 S 表示三角形面积,用 a 和 h 表示三角形的底 和高,那么三角形面积的计算公式可以写成什么? (二)教学例题 红领巾的底是 100cm, 高 33cm, 它的面积是多少平方厘米? 1由学生独立解答 2订正答案(教师板书) 三、质疑调节 (一)总结这一节课的收获,并提出自己的问题 (二)教师提问: (1)要求三角形面积需要知道哪两个已知条件? (2)求三角形面积为什么要除以 2? (一)下面平行四边形的面积是 12 平方厘米,求画斜线 的三角形的面积(二)计算下面每个三角形的面积 1底是 4.2 米,高是 2 米; 2底是 3 分米,高是 1.3 分米; 3底是 1.8 米,高是.1.2 米; 拓展应用 (三) 判断 1、 一个三角形的底和高是 4 厘米, 它的面积就是 16 平方 厘米。 ( ) /b-b70ebea4fab069dc502201bb.html2、等底等高的两个三角形,面积一定相等。 ( )、两个三角形一定可以拼成一个平行四边形。 ( )、三角形的底是 3 分米,高是 20 厘米,它的面积是 30 平方厘米。 ( ) 总 结 总结这一节课的收获,并提出自己的问题 做一做 三角形面积的计算 板书设计 因为:平行四边形的面积=底高, 例题? ? 100 33 作业布置三角形面积 = 拼成的平行四边形的一半,_2=1650(cm) 所以三角形面积=底高2 S=ah2 教学札记课题 课型 知识 目标 能力 目标 情感 目标 重点 难点 教学过程 目标导学 新授课 备课人梯形面积的计算 田雨新 执教时间 11 月 20 日教 学 目 标理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。 发展学生空间观念。培养抽象、概括和解决实际问题的能力。 掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。 理解、掌握梯形面积的计算公式。 理解梯形面积公式的推导过程。 教 学 预 设 个 性 修 改建立模型、反思小结(探究算法、反思小结)知识迁移、 检查测评 巩固练习、反馈提问。 一导入新课 (1)投影出示一个三角形,提问: 这是一个三角形,怎样求它的面积?三角形面积计算 公式是怎样推导得到的?学生回答后,指名学生操作演示 转化的方法。创境激疑(2)展示台出示梯形,让学生说出它的上底、下底和各是多 少厘米。 (3)教师导语: 我们已学会了用转化的方法推导三角形 面积的计算公式,那怎样计算梯形的面积呢?这节课我们 就来解决这个问题。 (板书课题,梯形面积的计算) 二新课展开 第一层次,推导公式合作探究(1)操作学具 启发学生思考:你能仿照求三角形面积的办法,把梯形 也转化成已学过的图形,计算出它的面积吗?_学生拿出两个完全一样的梯形,拼一拼,教师巡回观察 指导。 指名学生操作演示。 教师带领学生共同操作: (2)观察思考/b-b70ebea4fab069dc502201bb.html 教师提出问题引导学生观察。 a. 用两个完全一样的梯形可以拼成一个平行四边形。 这个 平行四边形的底和高与梯形的底和高有什么关系? b. 每个梯形的面积与拼成的平形四边形的面积有什么关 系? (3)反馈交流,推导公式。 学生回答上述问题。 师生共同总结梯形面积的计算公式。 板书:梯形的面积=(上底 下底)高2 字母表示公式。 教师叙述:如果有 S 表示梯形的面积, 用 a、b 和 h 分别表示梯形的上底、下底和高,怎样用字母 表示梯形面积的计算公式呢? 学生回答后,教师板书: “S=(a b)h2” 。 第二层次,深化认识。 (1)启发学生回忆平行四边形面积公式的推导方法。 提问:想一想平行四边形面积公式是怎样推导得到的? 学生回答,教师在展示台再现平行四边形面积公式的推 导方法。 (2)引导操作。 学习平行四边形面积时,我们用割补的方法把平行四边 形转化成长方形。能否仿照求平行四边形面积的方法,把 一个梯形转化成已学过的图形,推导梯形面积的计算公式 呢? 学生动手操作、探究、讨论,教师作适当指导。 (3)信息反馈,扩展思路。 说一说你是怎样割补的?教师展示各种割补方法。 第三层次,公式应用。 (1)出示课本例题,教师指导学生理解“横截面” 。 (2)学生尝试解答。_拓展应用 总 结展示台出示例题的解答,反馈矫正。 全课小结。 (略) (1)完成练习十七第 1、2 和 3 题。 (2)讨论完成练习。 梯形面积的计算作业布置板书设计梯形的面积=(上底 下底)高2 S=(a b)h2教学札记课题 课型 知识 目标 能力 目标 情感 目标 重点 难点 教学过程 目标导学 新授课 备课人组合图形的面积 田雨新 执教时间 11 月 20 日教 学 目 标明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。 能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。 渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索 活动中培养他们的创新精神。 /b-b70ebea4fab069dc502201bb.html在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方 形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。 根据图形特征采用什么方法来分解组合图形, 达到分解的图形既明确而又准确 求出它的面积。 教 学 预 设 个 性 修 改复习激趣 ? 目标导学 ? 自主合作 ? 汇报交流 ? 变 式训练 一、 创设情境,引导探索 师:大家搜集了许多有关生活中的组合图形的图片,谁 来给大家展示并汇报一下。 (指名回答) 生 1:这枝铅笔的面是由一个长方形和一个三角形组成 的。 生 2:这条小鱼的面是由两个三角形组成的。创境激疑_? 师:同桌的同学互相看一看,说一说,你们搜集的组合图 形分别是由哪些图形组成的? 二、探索活动,寻求新知 师:生活中有许多组合图形,老师准备了 3 幅,大家观察 一下,这些组合组图形是由哪些简单图形组成的?如果求 它们的面积可以怎样求?图一 三图二图合作探究课件逐一出示图一、图二、图三,让学生发表意见。 生 1:小房子的表面是由一个三角形和一个正方形组成 的。 生 2:风筝的面是由四个小三角形组成的。 生 3: 队旗的面是由一个梯形和一个三角形组成的。 ? 师:这几个都是组合图形,通过大家的介绍,你觉得什么 样的图形是组合图形? 生 1:由两个或两个以上的图形组成的是组合图形。 生 2:有几个平面图形组成的图形是组合图形。 ? 师小结:组合图形是由几个简单的图形组合而成的。 图一:是由三角形、长方形、加上长方形中间的正方形组 成的, 面积 = 三角形面积长方形面积正方形面积 图二:是由两个三角形组成的。 面积 = 三角形面积 三角形面积 图三:作辅助线使它分成一个大梯形和一个三角形。 方法一:是由两个梯形组成的。师:为什么要分成两个梯形?怎样分成两个梯形? 引导学生说出将它转化成以学过的简单图形以及在图中作 辅助线。 师:是的,可以用作辅助线的方法将它转化成以前学过的_简单图形来计算。 (板书:转化) 。大家想想,用辅助线的 方法还有不同的作法/b-b70ebea4fab069dc502201bb.html吗? 方法二:作辅助线补成一个长方形,使它变成一个大长方 形减去一个三角形。方法三:作辅助线使它分成一个大梯形和一个三角形。(课件分别演示这三种方法)分割法添补法师:数学中我们习惯用分割法或添补法,用辅助线来把一 个复杂的组合图形转变成比较简单的图形,为计算带来简 便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。 板书:分割法或添补法(转化) :分解成简单图形。 师:请你找一找生活中哪些地方的表面有组合图形呢?(学 生自由回答,对学生们正确的回答要给予好的评价,特别 是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表 现) 师:同学们认识组合图形了,那么大家还想了解有关组合 图形的哪些知识? 生 1:我想了解组合图形的周长。 生 2:我想知道组合图形的面积怎样计算。 ?_这节课我们重点学习组合图形的面积。 三、探讨例题,学习新知 师:同学们的表现真了不起。老师家这几天装修房子, 要刷新墙体。刷新墙体的工人工资是平方米来计算的,请 你们帮我算一算。 (课件出示例 4) 例 4:右图表示的是一间房子侧面墙的形状。它的面积是 多少平方米?师:怎样才能计算出这个组合图形的面积呢? 先让学生思考,再动手计算。 交流汇报: 方法一:把这个组合图形一分为二,一个是正方形,另一 个是三角再分别算出正方形和三角形的面积,最后算出它 们的面积和,就可以求出这个图形的面积。 师:这是一个不错的想法。要算每个简单图形的面积分别 需要哪些条件?请找一找,并标出来。 指名学生找相应的条件。 在实物投影仪上展出示学生的答案: 55=25 (平方米) 522=5(平方米) 25 5=30 (平方米) 答:房子侧面墙的面积是 30 平方米。 (注意检查做错的同学,找出错的原因。 ) 师:除了这种方法,还有同学用别的方法吗? 方法二:先把这个图形补上两个三角形,看作一个长方形, 先算出长方的面积后,再减去两个小三角形的面积。 师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案: 长方形:长:5 2=7 米、宽:5 米; 三角形:底是 2/b-b70ebea4fab069dc502201bb.html 米,高是 2.5 米。 5(5 2)-2.5222 =35-5 =30(平方米) 答:房子侧面墙的面积是 30 平方米。 方法三:把这个图形从顶点向下作一条垂线,就分成两个 梯形,这两个梯形面积是相等的,所以只要求出一个梯形 的面积再乘以 2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。.5m 2mm 5mm 2.5m 2mm_展示学生的答案: (5 7)2.522=30(平方米) 答:房子侧面墙的面积是 30 平方米。 师:请同学们观察这几种解法,它们有什么相同的地方? 让学生发表意见。 小结:使用了分割法或添补法,作辅助线把组合图形转化 成简单图形来计算面积。 (也就是先把组合图形分解成已经 学过的图形,然后分别求出它们的面积再相加。 ) 师:非常感谢大家为我解决了难题,在日常生活中,到处 都有组合图形,我们计算面积时,根据“图形位移,面积不 变”的道理,用辅助线把它进行割、补、拼转化成简单的图 形,再计算出该组合图形的面积就方便多了,这些方法中 有的简单,有的繁琐,如果没有要求多种方法的,我们尽 量选择最简单的方法来计算。 四:利用新知,解决生活中的问题。 1、做一做 刚才同学们帮老师算了刷新墙的面积, 客厅大概是下 图这种形状。准备铺上地板砖,大家能帮老师计算一下客 厅的总面积吗?小组合作, 讨论完成, 教师参与小组活动。 方法一:把组合图形分割成两个 长方形。 4337 1221 33(cm2) 拓展应用 方法二:分割成一个长方形和一个正方形。 4633 249 33(cm2)第三种方法:分割成两个梯形。 (37)32(36)42第四种方法:分割成一个长方形和一个正方形。_7633 429 33(cm2)c mc mcmcm让学生说一说试用了什么方法?前三种使用了分割 法,最后一种使用了添补法。 师:这节课你学到了什么? 结束语:同学们/b-b70ebea4fab069dc502201bb.html在这节课表现非常出色!计算组合图形的 面积,一般是把它们分割或添补成我们学过的简单图形, 如长方形、正方形、三角形、梯形、平行四边形等,要注 意根据已知条件分或补,再计算它们的面积。 做一做 组合图形的面积 2.5m 2m 2.5m 2m总结作业布置m 5m 5m 板书设计 例4 第一种方法: 55 522 =25 102 =30(平方米) 第二种方法: 5(5 2)-2.5222 =35-5 =30(平方米) 答: (略) 。 5m课题 课型 教 学 知识 目标 新授课估算图形的面积树叶的面积 备课人 田雨新 执教时间 12 月 2 日能用数方格的方法估测出不规则平面图形的面积。 初步体会“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理赔服务合同协议书范本
- 清远入城证申请合同范本
- 自制挖掘机租赁合同范本
- 派遣员工终止合同协议书
- 鱼缸消毒灯销售合同范本
- 股份合同终止协议书范本
- 珠海住宅装修协议书范本
- 灯具工程分包合同协议书
- 特许经营权协议合同范本
- 签订房屋期权买卖协议书
- 语言学纲要(新)课件
- 高中物理必修一期中测试题及答案解析
- 风冷热泵机组调试方案
- 《园林主要病虫害防治一览表》
- 部编版语文五年级上册作文审题训练题目
- 李中莹心理创伤简快辅导技巧(课堂PPT)
- VS1真空断路器说明书
- JTT230-2021汽车导静电橡胶拖地带_(高清-最新)
- 监理周例会总承包单位工作汇报PPT课件
- 生态融合绿色发展(EOD)示范项目可行性研究报告模板
- 四大经典之温病
评论
0/150
提交评论