2008年高考物理考前300题必考--计算部分.doc_第1页
2008年高考物理考前300题必考--计算部分.doc_第2页
2008年高考物理考前300题必考--计算部分.doc_第3页
2008年高考物理考前300题必考--计算部分.doc_第4页
2008年高考物理考前300题必考--计算部分.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

做到每天一练能力一定攀升高考物理必做题一、计算题部分:如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸小于L。小滑块与木板之间的动摩擦因数为 (1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。问:m在M上面滑动的时间是多大? 有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。如图所示,电容量为C的平行板电容器的极板A和B水平放置,相距为d,与电动势为、内阻可不计的电源相连。设两板之间只有一个质量为m的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的倍(1)。不计带电小球对极板间匀强电场的影响。重力加速度为g。(1)欲使小球能够不断地在两板间上下往返运动,电动势至少应大于多少?(2)设上述条件已满足,在较长的时间间隔T内小球做了很多次往返运动。求在T时间内小球往返运动的次数以及通过电源的总电量。如图所示,电荷量均为q、质量分别为m和2m的小球A和B,中间连接质量不计的细绳,在竖直方向的匀强电场中以速度v0匀速上升,某时刻细绳断开求:(1)电场强度大小及细绳断开后两球A、B的加速度;(2)当球B速度为零时,球A的速度大小;(3)自绳断开至球B速度为零的过程中,两球组成系统的机械能增量为多少?如图所示,在竖直平面内建立xOy直角坐标系,Oy表示竖直向上的方向已知该平面内存在沿x轴负方向的区域足够大的匀强电场,现有一个带电量为2. 510-4C 的小球从坐标原点O沿y轴正方向以0. 4 kgm/s的初动量竖直向上抛出,它到达的最高点位置为图中的Q点,不计空气阻力,g取10 m/s2.(1)指出小球带何种电荷;(2)求匀强电场的电场强度大小;(3)求小球从O点抛出到落回z轴的过程中电势能的改变量有一种电子仪器叫示波器,可以用来观察电信号随时间变化的情况,示波器的核心部件是示波管,如图甲所示,它由电子枪、偏转电极和荧光屏组成如果在偏转电极XX和YY上都没加电压,电子束从金属板小孔射出后将沿直线传播,打在荧光屏上,在那里产生一个亮斑如果在偏转电极XX上不加电压,只在偏转电极YY上加电压,电子在偏转电极YY的电场中发生偏转,离开偏转电极YY后沿直线前进,打在荧光屏上的亮斑在竖直方向发生位移y,如图乙所示(1)设偏转电极YY上的电压为U、板间距离为d,极板长为l1,偏转电极YY到荧光屏的距离为l2电子所带电量为e,以v0的速度垂直电场强度方向射入匀强电场,如图乙所示试证明y(2)设电子从阴极射出后,经加速电场加速,加速电压为U;,从偏转电场中射出时的偏移量为y在技术上我们把偏转电场内单位电压使电子产生的偏移量(即y/U)称为示波管的灵敏度,试推导灵敏度的表达式,并提出提高灵敏度可以采用的方法如图所示,处于同一条竖直线上的两个点电荷A、B带等量同种电荷,电荷量为Q; G、H是它们连线的垂直平分线另有一个带电小球C,质量为m、电荷量为q(可视为点电荷),被长为l的绝缘轻细线悬挂于O点,现在把小球C拉起到M点,使细线水平且与 A、B处于同一竖直面内,由静止开始释放,小球C向下运动到GH线上的N点时刚好速度为零,此时细线与竖直方向上的夹角= 300试求:(1)在A、B所形成的电场中,M、N两点阿的电势差,并指出M、N哪一点的电势高(2)若N点与A、B两个点电荷所在位置正好形成一个边长为a的正三角形,则小球运动到N点瞬间,轻细线对小球的拉力FT(静电力常量为k).如图所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道上左侧高最高点M、间接有阻值为的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两导轨间距为l,一电阻也为,质量为m的金属棒从处静止释放,经过时间t到达导轨最低点的速度为v,不计摩擦,求:(1)金属棒到达时,所受磁场力的大小(2)金属棒到达时,回路中的电功率(3)从到过程中,通过金属棒的电量(4)金属棒到达时,加速度的大小有多大?如图所示,在倾角为的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L一个质量为m、边长也为L的正方形线框(设电阻为R)以速度进入磁场时,恰好做匀速直线运动,若当ab边到达与中间位置时,线框又恰好做匀速运动,则(1)当ab边刚越过时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab边到达和中点的过程中产生的热量是多少?如图所示,MN和PQ是两根放在竖直面内且足够长的平行金属导轨,相距l=50cm。导轨处在垂直纸面向里的磁感应强度B=5T的匀强磁场中。一根电阻为r=0.1的金属棒ab可紧贴导轨左右运动。两块平行的、相距d=10cm、长度L=20cm的水平放置的金属板A和C分别与两平行导轨相连接,图中跨接在两导轨间的电阻R=0.4。其余电阻忽略不计。已知当金属棒ab不动时,质量m=10g、带电量q=103C的小球以某一速度v0沿金属板A和C的中线射入板间,恰能射出金属板(g取10m/s2)。求:(1)小球的速度v0;(2)若使小球在金属板间不偏转,则金属棒ab的速度大小和方向;(3)若要使小球能从金属板间射出,则金属棒ab匀速运动的速度应满足什么条件?10如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为L= 0.2m,在导轨的一端接有阻值为R0.5的电阻,在x0处有一与水平面垂直的均匀磁场,磁感强度B= 0.5T。一质量为m = 0. lkg的金属直杆垂直放置在导轨上,并以v0 = 2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好。求:(1)电流为零时金属杆所处的位置(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系11如图所示,在xoy平面内存在B=2T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1=6和R2=12。现有一长L=1m、质量m=0.1kg的金属棒在竖直向上的外力F作用下,以v=2m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,求:(1)金属棒在导轨上运动时R2上消耗的最大功率(2)外力F的最大值(3)金属棒滑过导轨OCA过程中,整个回路产生的热量。12如图所示,两水平放置的平行金属板、相距很近,上面分别开有小孔、,水平放置的平行金属导轨与、接触良好,且导轨在磁感强度为10的匀强磁场中,导轨间距050,金属棒紧贴着导轨沿平行导轨方向在磁场中做往复运动其速度图象如图所示,若规定向右运动速度方向为正方向,从0时刻开始,由板小孔处连续不断以垂直于板方向飘入质量为321021、电量161019的带正电的粒子(设飘入速度很小,可视为零)在板外侧有以为边界的匀强磁场10,与相距10,、方向如图所示(粒子重力及其相互作用不计)求(1)在040时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界?(2)粒子从边界射出来的位置之间最大的距离为多少?13如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为1,质量01的导体棒,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻1,磁感强度1的匀强磁场方向垂直于导体框架所在平面当导体棒在电动机牵引下上升38时,获得稳定速度,此过程中导体棒产生热量2电动机工作时,电压表、电流表的读数分别为7和1,电动机的内阻1不计一切摩擦,取102求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?14如图所示的装置可以测量飞行器在竖直方向上做匀加速直线运动的加速度该装置是在矩形箱子的上、下壁上各安装一个可以测力的传感器,分别连接两根劲度系数相同(可拉伸可压缩)的轻弹簧的一端,弹簧的另一端都固定在一个滑块上,滑块套在光滑竖直杆上现将该装置固定在一飞行器上,传感器P在上,传感器Q在下飞行器在地面静止时,传感器P、Q显示的弹力大小均为10 N求:(1)滑块的质量(地面处的g=10 m/s2)(2)当飞行器竖直向上飞到离地面处,此处的重力加速度为多大?(R是地球的半径)(3)若在此高度处传感器P显示的弹力大小为F=20 N,此时飞行器的加速度是多大?15平行轨道PQ、MN两端各接一个阻值R1=R28的电阻,轨道间距L=1 m,轨道很长,本身电阻不计轨道间磁场按如图所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度均为2 cm,磁感应强度的大小均为B=1 T,每段无磁场的区域宽度均为1 cm,导体棒ab本身电阻r=1,与轨道接触良好现使ab以v=10 m/s向右匀速运动求:(1)当导体棒ab从左端进入磁场区域时开始计时,设电流方向从a流向b为正方向,请画出流过导体棒ab的电流随时间变化关系的it图象(2)整个过程中流过导体棒ab的电流为交变电流,求出流过导体棒ab的电流有效值16如图所示为某种电子秤的原理示意图,AB为一均匀的滑线变阻器,阻值为R,长度为L,两边分别有P1、P2两个滑动头,与P1相连的金属细杆可在被固定的竖直光滑绝缘杆MN上保持水平状态,金属细杆与托盘相连,金属细杆所受重力忽略不计。弹簧处于原长时P1刚好指向A端,若P1、P2间出现电压时,该电压经过放大,通过信号转换后在显示屏上显示出质量的大小已知弹簧的劲度系数为k,托盘自身质量为m0,电源的电动势为E,电源的内阻忽略不计,信号放大器、信号转换器和显示器的分流作用忽略不计求:(1)托盘上未放物体时,在托盘的自身重力作用下,P1距A端的距离x1;(2)在托盘上放有质量为m的物体时,P1,距A端的距离x2;(3)在托盘上未放物体时通常先校准零点,其方法是:调节P2,从而使P1、P2间的电压为零校准零点后,将被称物体放在托盘上,试推导出被称物体的质量m与P1、P2间电压U的函数关系式17电磁炉专用平底锅的锅底和锅壁均由耐高温绝缘材料制成起加热作用的是安在锅底的一系列半径不同的同心导电环导电环所用的材料单位长度的电阻R=0.125/m,从中心向外第n个同心圆环的半径为rn=(2n-1) r1(n为正整数且n7),已知r1=1.0 cm当电磁炉开启后,能产生垂直于锅底方向的变化磁场,已知该磁场的磁感应强度B的变化率为,忽略同心导电圆环感应电流之间的相互影响(1)求出半径为rn的导电圆环中产生的感应电动势瞬时表达式;(2)半径为r1的导电圆环中感应电流的最大值I1m是多大?(计算中可取=10 )(3)若不计其他损失,所有导电圆环的总功率P是多大? 18如图所示,从阴极K发射的电子经电势差U0=5 000 V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10 cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2= 75 cm处放置一个直径D =20 cm、带有纪录纸的圆筒整个装置放在真空内,电子发射时的初速度不计,如图所示,若在金属板上加U=1000 cos2t (V )的交流电压,并使圆筒绕中心轴按图示方向以n= 2 r/s匀速转动,分析电子在纪录纸上的轨迹形状并画出从t=0开始的1s内所纪录到的图形19某同学设计了一种测定风力的装置,其原理如图所示,迎风板与一轻弹簧的一端N相接,穿在光滑的金属杆上弹簧是绝缘材料制成的,其劲度系数k = 1 300 N/m,自然长度L0= 0. 5 m,均匀金属杆用电阻率较大的合金制成,迎风板面积为S=0.5 m2,工作时总是正对着风吹来的方向电路中左端导线与金属杆M端相连,右端导线接在N点并可随迎风板在金属杆上滑动,且与金属杆接触良好限流电阻的阻值R=1,电源电动势E=12 V,内阻r=0.5合上开关,没有风吹时,弹簧处于原长,电压表的示数U1=3.0 V;如果某时刻由于风吹使迎风板向左压缩弹簧,电压表的示数变为U2=2.0V,求:(1)金属杆单位长度的电阻;(2)此时作用在迎风板上的风力;(3)若风(运动的空气)与迎风板作用后速度变为零,已知装置所在处的空气密度为1. 3 kg/m3 ,求风速为多大?20如图甲所示,真空中两水平放置的平行金属板C、D,上面分别开有正对的小孔O1、O2,金属板C、D接在正弦交流电流上,两板C、D间的电压UCD随时间t变化的图象如图乙所示t=0时刻开始,从小孔O1处不断飘入质量m=3. 210-25kg、电荷量e=1. 6 10-19C的带正电的粒子(设飘入速度很小,可视为零)在D板外侧有以MN为边界的匀强磁场,MN与金属板心相距d=10 cm,匀强磁场的磁感应强度大小B=0. 1 T,方向如图甲所示,粒子的重力及粒子之间的相互作用力不计平行金属板C、D之间的距离足够小,粒子在两板间的运动时间可以忽略不计求:(1)带电粒子经小孔O2进入磁场后能飞出磁场边界MN的最小速度为多大?(2)从0到0.04 s末的时间内,哪些时刻飘入小孔O1的粒子能穿过电场并飞出磁场边界MN?(3)磁场边界MN有粒子射出的长度范围(保留一位有效数字)21水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如右下图.(取重力加速度g=10m/s2)(1)金属杆在匀速运动之前做什么运动?(2)若m=0.5kg,L=0.5m,R=0.5;磁感应强度B为多大?(3)由v-F图线的截距可求得什么物理量?其值为多少?22据报道,1992年7月,美国阿特兰蒂斯号航天飞机进行了一项卫星悬绳发电实验取得部分成功航天飞机在地球赤道上空离地面约3400km处由东向西飞行,从航天飞机上向地心方向发射一颗卫星,携带一根长20km,电阻为800W的金属悬绳,使这根悬绳与地磁场垂直,做切割磁感线运动,假定这一范围内的地磁场是均匀的,磁感应强度约为,且认为悬绳上各点的切割速度都与航天飞机的速度相同,根据理论设计,通过电离层(由等离子体组成)的作用,悬绳可产生约3A的感应电流,试求:(1)航天飞机相对于地面的大约速度?(地表面重力加速度为,地球半径为6400km)(2)悬线中产生的感应电动势?(3)悬线两端的电压?(4)航天飞机绕地球运行一周悬线输出的电能?23如图所示,宽L=1m、倾角的光滑平行导轨与电动势E=3.0V、内阻r=0.5的电池相连接,处在磁感应强度、方向竖直向上的匀强磁场中。质量m=200g、电阻R=1的导体ab从静止开始运动。不计期于电阻,且导轨足够长。试计算:(1)若在导体ab运动t=3s后将开关S合上,这时导体受到的安培力是多大?加速度是多少?(2)导体ab的收尾速度是多大?(3)当达到收尾速度时,导体ab的重力功率、安培力功率、电功率以及回路中焦耳热功率和化学功率各是多少?24如图甲所示,在水平桌面上固定着两根相距20cm、相互平行的无电阻轨道P和Q,轨道一端固定一根电阻为00l的导体棒a,轨道上横置一根质量为40g、电阻为0.0l的金属棒b,两棒相距20cm该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中开始时,磁感应强度B0=010T(设棒与轨道间的最大静摩擦力和滑动摩擦力相等,g取10ms2)(1)若保持磁感应强度Bo的大小不变,从t=O时刻开始,给b棒施加一个水平向右的拉力,使它做匀加速直线运动此拉力F的大小随时问t变化关系如图乙所示.求匀加速运动的加速度及b棒与导轨间的滑动摩擦力(2)若从某时刻t=0开始,按图丙中磁感应强度B随时间t变化图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量是多少?25如图所示,在磁感应强度大小为B、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的U型光滑金属导轨,在导轨面上各放一根完全相同的质量为的匀质金属杆和,开始时两根金属杆位于同一竖起面内且杆与轨道垂直。设两导轨面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆单位长度的电阻为r。现有一质量为的不带电小球以水平向右的速度撞击杆的中点,撞击后小球反弹落到下层面上的C点。C点与杆初始位置相距为s。求:(1)回路内感应电流的最大值;(2)整个运动过程中感应电流最多产生了多少热量;(3)当杆与杆的速度比为时,受到的安培力大小。26如图,直角三角形导线框abc固定在匀强磁场中,ab是一段长为l、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为。磁场的磁感强度为B,方向垂直纸面向里。现有一段长度为、电阻为的均匀导体杆MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触。当MN滑过的距离为时,导线ac中的电流是多大?方向如何?27图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。28光滑水平导轨宽L=1m,电阻不计,左端接有6V 6W的小灯。导轨上垂直放有一质量m=0.5kg、电阻r=2的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示。整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T。释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)求:钩码落地前的瞬间,导体棒的加速度;在钩码落地前的过程中小灯泡消耗的电能;在钩码落地前的过程中通过电路的电量。29如图所示,光滑平行的金属导轨MN、PQ相距l,其框架平面与水平面成角,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面向下、宽为d的匀强磁场,磁感应强度为B一质量为m、电阻为r的导体棒ab,垂直搁置于导轨上,与磁场上边界相距d0,现使它由静止开始运动,在棒ab离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)求:(1)棒ab在离开磁场下边界时的速度,(2)棒ab通过磁场区的过程中整个电路所消耗的电能30如图所示,水平固定的光滑U形金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一阻值为R的电阻(金属框架、金属棒及导线的电阻均可忽略不计),整个装置处在竖直向下的匀强磁场中,磁感应强度大小为B现给棒ab一个初速度v0,使棒始终垂直框架并沿框架运动,如图甲所示(1)金属棒从开始运动到稳定状态的过程中,求通过电阻R的电量和电阻R中产生的热量,(2)金属棒从开始运动到稳定状态的过程中,求金属棒通过的位移;(3)如果将U形金属框架左端的电阻R换为一电容为C的电容器,其他条件不变,如图乙所示求金属棒从开始运动到稳定状态时电容器所储存的电量。31如图所示,两根水平平行固定的光滑金属导轨宽为L,足够长,在其上放里两根长也为L且与导轨垂直的金属棒ab和cd,它们的质量分别为2m、m,电阻阻值均为R(金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B、方向竖直向下的匀强磁场中(1)现把金属棒ab锁定在导轨的左端,如图甲,对 cd施加与导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?(2)若对金属棒ab解除锁定,如图乙,使金属棒cd获得瞬时水平向右的初速度v0,当它们的运动状态达到稳定的过程中,流过金属棒ab的电量是多少?整个过程中ab和cd相对运动的位移是多大?32如图所示,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感应强度为B一质量为m、电阻为r的导体棒ab垂直搁在导轨上,与磁场左边界相距d0。现用一大小为F、水平向右的恒力拉棒ab,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)求:(1)棒ab在离开磁场右边界时的速度,(2)棒ab通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab棒在磁场中可能的运动情况33如图所示,两根足够长的直金属导轨MN、PQ平行放里在倾角为的绝缘斜面上,两导轨间距为L。 M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直整套装置处于匀强磁场中,磁场方向垂直于斜面向上导轨和金属杆的电阻可忽略让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热量为Q导轨和金属杆接触良好,它们之间的动摩擦因数为,且tan。已知重力加速度为g。(1)求磁感应强度的大小;(2)金属杆在加速下滑过程中,当速度达到时,求此时杆的加速度大小;(3)求金属杆从静止开始至达到最大速度的过程中下降的高度34如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器R)、定值电阻、电容器(原来不带电)和开关S相连整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B。一质量为m,电阻不计的金属棒ab横踌在导轨上已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻(1)当S接1时,金属棒ab在磁场中恰好保持静止,则滑动变阻器接入电路的阻值R多大?(2)当S接2后,金属棒ab从静止开始下落,下落距离s时达到稳定速度,则此稳定速度的大小为多大?下落s的过程中所需的时间为多少?(3)先把开关S接通2,待ab达到稳定速度后,再将开关S接到3试通过推导,说明ab棒此后的运动性质如何?35如图所示,一正方形平面导线框abcd,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a1b1c1d1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦两线框位于同一竖直平面内,ad边和a1d1边是水平的两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN和PQ均与ad边及a1d1边平行,两边界间的距离为h=78.40 cm磁场方向垂直线框平面向里已知两线框的边长均为l= 40. 00 cm,线框abcd的质量为m1 = 0. 40 kg,电阻为R1= 0. 80。线框a1 b1 c1d1的质量为m2 = 0. 20 kg,电阻为R2 =0. 40现让两线框在磁场外某处开始释放,两线框恰好同时以速度v=1.20 m/s匀速地进入磁场区域,不计空气阻力,重力加速度取g=10 m/s2.(1)求磁场的磁感应强度大小(2)求ad边刚穿出磁场时,线框abcd中电流的大小36如图所示,顶角=450的金属导轨MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向左滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均匀为r导体棒与导轨接触点为a和b,导体棒在滑动过程中始终保持与导轨良好接触t=0时,导体棒位于顶角O处,求:(1)t时刻流过导体棒的电流大小I和电流方向(2)导体棒做匀速直线运动时水平外力F的表达式(3)导体棒在0t时间内产生的焦耳热Q.(4)若在t0时刻将外力F撤去,导体棒最终在导轨上静止时的坐标x.37如图所示,在磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,有一个质量为m、半径为r、电阻为R的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A,现在A点对线圈施加一个方向与磁场垂直,位于线圈平面内并跟磁场边界垂直的拉力F,将线圈以速度v匀速拉出磁场以切点为坐标原点,以F的方向为正方向建立x轴,设拉出过程中某时刻线圈上的A点的坐标为x.(1)写出力F的大小与x的关系式;(2)在Fx图中定性画出Fx关系图线,写出最大值F0的表达式38在图甲中,直角坐标系xOy第1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B,第3象限内的磁感应强度大小为B,磁感应强度的方向均垂直于纸面向里现将半径为l、圆心角为900的扇形导线框OPQ以角速度绕O点在纸面内沿逆时针匀速转动,导线框回路电限为R.(1)求导线框中感应电流的最大值(2)在图乙中画出导线框匀速转动一周的时间内感应电流I随时间t变化的图象(规定与图甲中线框的位置相对应的时刻为t=0,逆时针方向的电流为正方向)(3)求线框匀速转动一周产生的热量 39如图所示为某一装置的俯视图,M、N为两个竖直放置的平行金属板,相距为0.4 m,L1和L2为与M、N平行的两根金属导轨(两导轨较细,与M、N上边棱处于同一水平面),L1与M以及L2与N的间距都是0. 1 m,两导轨的电阻不计,其右端接有R=0. 3的电阻现有一长为0. 4 m、电阻为0.2的均匀金属导体棒ab,棒上的a、b、c、d四点分别与M、 N、L1、L2接触良好,且金属棒ab与金属板M、N正交,整个装置放在竖直向下的匀强磁场中今有一带正电粒子(不计重力)以v0=7 m/s的初速度平行于极板水平入射求当金属棒ab向何方向以多大速度运动时,可使带电粒子做匀速直线运动?40如图(a)所示是某人设计的一种振动发电装置,它的结构是一个半径为r=0. 1 m的20匝线圈,线圈套在永久磁铁槽中,磁场的磁感线均沿半径方向均匀分布,其右视图如图(b)在线圈所在位置磁感应强度B的大小均为0. 2 T。线圈的电阻为2,它的引出线接有8的灯L,外力推动线圈的P端做往复运动,便有电流通过电灯当线圈向右的位移随时间变化的规律如图(c)所示时(x取向右为正):(1)试画出感应电流随时间变化的图象在图132(b)中取逆时针电流为正(2)求每一次推动线圈运动过程中的作用力(3)求该发电机的功率(摩擦等损耗不计)41磁流体发电技术是世界上正在研究的新兴技术,它有效率高(可达45-55,火力发电效率为30)、污染少等优点,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)以声速的0.82.5倍的速度喷射入匀强磁场中,磁场中有两块金属板A,B(相当于电源的两个极,并与外电阻R相连),这时A,B上就积聚电荷产生电压,设粒子所带电量为q,进入磁场的喷射速度是v,磁场的磁感应强度为B,AB间的距离为d(1)说明磁流体发电中能量的转换关系,求出两极间电压的最大值(2)设磁流体发电机内阻为r,当外电阻R是多少时输出功率最大?并求最大输出功率(3)磁悬浮现象是指将某种低温液态物质倒入金属盘后,能使金属盘达到转变温度从而产生超导现象,在金属盘上方释放一永磁体,当它下落到盘上方某一位置时即产生磁悬浮现象,试分析说明产生磁悬浮现象的原因(4)利用磁悬浮现象,人们已经设计制成磁悬浮高速列车,此种列车车厢下部装有电磁铁,运行所需槽形导轨的底部和侧壁装有线圈,其作用是什么?这种列车的运行速度是一般列车的34倍,简述能达到这样高速的原因42如图所示,两条光滑的绝缘导轨,导轨的水平部分与圆弧部分平滑连接,两导轨间距为L,导轨的水平部分有n段相同的匀强磁场区域(图中的虚线范围),磁场方向竖直向上,磁场的磁感应强度为B,磁场的宽度为s,相邻磁场区域的间距也为s,、大于L,磁场左、右两边界均与导轨垂直现有一质量为m,电阻为r,边长为L的正方形金属框,由圆弧导轨上某高度处静止释放,金属框滑上水平导轨,在水平导轨上滑行一段时间进人磁场区域,最终线框恰好完全通过n段磁场区域地球表面处的重力加速度为g,感应电流的磁场可以忽略不计,求:(1)刚开始下滑时,金属框重心离水平导轨所在平面的高度;(2)整个过程中金属框内产生的电热;(3)金属框完全进人第k(kn)段磁场区域前的时刻,金属框中的电功率 43如图所示,在方向竖直向上的磁感应强度为B的匀强磁场中有两条光滑固定的平行金属导轨MN、PQ,导轨足够长,间距为L,其电阻不计,导轨平面与磁场垂直,ab、cd为两根垂直于导轨水平放置的金属棒,其接入回路中的电阻分别为R,质量分别为m,与金属导轨平行的水平细线一端固定,另一端与cd棒的中点连接,细线能承受的最大拉力为T,一开始细线处于伸直状态,ab棒在平行导轨的水平拉力F的作用下以加速度a向右做匀加速直线运动,两根金属棒运动时始终与导轨接触良好且与导轨相垂直(1)求经多长时间细线被拉断?(2)若在细线被拉断瞬间撤去拉力F,求两根金属棒之间距离增量x的最大值是多少?44有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0. t0 = 0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙所示,图中斜向虚线为O点速度图线的切线,数据由图中给出,不考虚重力影响,求:(1)磁场磁感应强度的变化率;(2) t2时刻回路电功率45如图所示,由粗细均匀的电阻丝绕成的矩形导线框abcd固定于水平面上,导线框边长=L, =2L,整个线框处于竖直方向的匀强磁场中,磁场的磁感应强度为B,导线框上各段导线的电阻与其长度成正比,已知该种电阻丝单位长度上的电阻为,的单位是/m今在导线框上放置一个与ab边平行且与导线框接触良好的金属棒MN,MN的电阻为r,其材料与导线框的材料不同金属棒MN在外力作用下沿x轴正方向做速度为v的匀速运动,在金属棒从导线框最左端(该处x=0)运动到导线框最右端的过程中: (1)请写出金属棒中的感应电流I随x变化的函数关系式;(2)试证明当金属棒运动到bc段中点时,MN两点间电压最大,并请写出最大电压Um的表达式;(3)试求出在此过程中,金属棒提供的最大电功率Pm;(4)试讨论在此过程中,导线框上消耗的电功率可能的变化情况46如图所示,为某一装置的俯视图,PQ、MN为竖直放置的很长的平行金属薄板,两板间有匀强磁场,它的磁感应强度大小为B,方向竖直向下,金属棒AB搁置在两板上缘,并与两板垂直良好接触,现有质量为m、带电量大小为q,其重力不计的粒子,以初速度v0水平射入两板间问:(1)金属棒AB应朝什么方向、以多大的速度运动,可以使带电粒子做匀速运动?(2)若金属棒运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv0/(qB)时的时间间隔是多少?(磁场足够大)47如图所示,长L=O. 80 m,电阻r=0. 30,质量m=0. 10 kg的金属棒CD垂直放在水平导轨上,导轨由两条平行金属杆组成,已知金属杆表面光滑且电阻不计,导轨间距也是L,金属棒与导轨接触良好,量程为03. 0 A的电流表串联接在一条导轨上,在导轨左端接有阻值R=0. 50的电阻,量程为01. 0 V的电压表接在电阻R两端,垂直于导轨平面的匀强磁场向下穿过导轨平面现以向右恒定的外力F=1.6 N使金属棒向右运动,当金属棒以最大速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏(1)试通过计算判断此满偏的电表是哪个表;(2)求磁感应强度的大小;(3)在金属棒CD达到最大速度后,撤去水平拉力F,求此后电阻R消耗的电能48图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计。导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直。质量m为6.010-3kg、电阻为1.0的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2。49如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B0.2T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a0.4m,b0.6m,金属环上分别接有灯、,两灯的电阻均为一金属棒MN与金属环接触良好,棒与环的电阻均不计(1)若棒以的速率在环上向右匀速滑动,求棒滑过圆环直经的瞬间,MN中的电动势和流过的电流;(2)撤去中间的金属棒MN,将右边的半圆环以为轴向上翻转90 ,若此后磁场随时间均匀变化,其变化率为T/s,求的功率50有一种磁性加热装置,其关键部分由焊接在两个等大的金属圆环上的n根间距相等的平行金属条组成鼠笼状,如图所示,每根金属条的长度为L,电阻为R,金属环的直径为D。电阻不计。图中虚线表示的空间范围内存在着磁感强度为B的匀强磁场,磁场的宽度恰好等于鼠笼金属条的间距,当金属环以角速度绕过两圆环的圆心的轴OO旋转时,始终有一根金属条在垂直切割磁感线。鼠笼的转动由一台电动机带动,这套加热装置的效率为。求:(1)在磁场中正在切割磁感线的那根金属条上通过的电流。(2)切割磁感线的金属条受到的安培力大小和电动机输出的机械功率。51如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中用粗线表示),R1=4、R2=8(导轨其它部分电阻不计)。导轨OAC的形状满足 (单位:m)。磁感应强度B=0.2T的匀强磁场方向垂直于导轨平面。一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻。求:外力F的最大值;金属棒在导轨上运动时电阻丝R1上消耗的最大功率;在滑动过程中通过金属棒的电流I与时间t的关系。52如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和 P之间接有阻值为R的定值电阻,导体棒ab长0.5m,其电阻为r,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B0.4T.现使ab以10ms的速度向右做匀速运动. (1)ab中的感应电动势多大? (2)ab中电流的方向如何? (3)若定值电阻R3.0,导体棒的电阻r1.0,,则电路电流大?53近期科学中文版的文章介绍了一种新技术-航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理太空垃圾等。从1967年至1999年17次试验中,飞缆系统试验已获得部分成功。该系统的工作原理可用物理学的基本定律来解释。下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为vP。已知地球半径为R,地面的重力加速度为g。(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外。设缆索中无电流,问缆索P、Q哪端电势高?此问中可认为缆索各处的速度均近似等于vP,求P、Q两端的电势差;(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大;(3)求缆索对Q的拉力FQ。54磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。如图2所示,通道尺寸a2.0m,b0.15m、c0.10m。工作时,在通道内沿z轴正方向加B8.0T的匀强磁场;沿x轴正方向加匀强电场,使两金属板间的电压U99.6V;海水沿y轴正方向流过通道。已知海水的电阻率0.22m。(1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向;(2)船以vs5.0m/s的速度匀速前进。若以船为参照物,海水以5.0m/s的速率涌入进水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到vd8.0m/s。求此时两金属板间的感应电动势U。(3)船行驶时,通道中海水两侧的电压U/UU计算,海水受到电磁力的80%可以转化为对船的推力。当船以vs5.0m/s的船速度匀速前进时,求海水推力的功率。55如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s。一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力。56如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为-q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点。要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?57如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触(1)求初始时刻导体棒受到的安培力(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为Ep,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少? (3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?58如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为和,两杆与导轨接触良好,与导轨间的动摩擦因数为,已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。 59如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动求: (1)线框在下落阶段匀速进人磁场时的速度V2; (2)线框在上升阶段刚离开磁场时的速度V1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q 60图1是一台发电机定子中的磁场分布图,其中N、S是永久磁铁的两个磁极,它们的表面呈半圆柱面形状。M是圆柱形铁芯,它与磁极的柱面共轴。磁极与铁芯之间的缝隙中形成方向沿圆柱半径、大小近似均匀的磁场,磁感强度B0.050T图2是该发电机转子的示意图(虚线表示定子的铁芯M)。矩形线框abcd可绕过ad、cb 边的中点并与图1中的铁芯M共轴的固定转轴oo旋转,在旋转过程中,线框的ab、cd边始终处在图1所示的缝隙内的磁场中。已知ab边长 l125.0cm, ad边长 l210.0cm 线框共有N8匝导线,放置的角速度。将发电机的输出端接入图中的装置K后,装置K能使交流电变成直流电,而不改变其电压的大小。直流电的另一个输出端与一可变电阻R相连,可变电阻的另一端P是直流电的正极,直流电的另一个输出端Q是它的负极。图3是可用于测量阿伏加德罗常数的装置示意图,其中A、B是两块纯铜片,插在CuSO4稀溶液中,铜片与引出导线相连,引出端分别为x、 y。现把直流电的正、负极与两铜片的引线端相连,调节R,使CuSO4溶液中产生I0.21A的电流。假设发电机的内阻可忽略不计,两铜片间的电阻r是恒定的。(1)求每匝线圈中的感应电动势的大小。(2)求可变电阻R与A、B间电阻r之和。61如图所示,顶角=45,的金属导轨 MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论