波形合成与分解.doc_第1页
波形合成与分解.doc_第2页
波形合成与分解.doc_第3页
波形合成与分解.doc_第4页
波形合成与分解.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉大学教学实验报告电子信息学院 专业 2012年 12 月 26 日 实验名称 指导教师 姓名 年级 学号 成绩 一、 预习部分1. 实验目的2. 实验基本原理3. 主要仪器设备(含必要的元器件、工具)1. 实验目的1)、在理论学习的基础上,通过实验深刻领会周期信号傅里叶级数分解的物理意义。2)、理解实际应用中通常采用有限项级数来逼近无限项级数,此时方均误差随项数的增加而减小。3)、观察并初步了解Gibbs 现象。4)、深入理解周期信号的频谱特点,比较不同周期信号频谱的差异。2. 实验基本原理满足Dirichlet 条件的周期信号f(t)可以分解成三角函数形式的傅里叶级数,表达式为:ft=a0+a1cos(w1t)+b1(sinw1t)+an(cosnw1t)+bnsin(nw1t)+=a0+n=0ancosnw1t+bnsin(nw1t)式中n 为正整数;该式表明:任何满足Dirichlet 条件的周期信号都可以分解成直流分量及许多正弦、余弦分量。这些正弦、余弦分量的频率必定是基频f1=1T1 的整数倍。通常把频率f1为的分量称为基波, 频率为nf1 的分量称为n 次谐波。周期信号的频谱只会出现在0,W1,2W1,nW1等离散的频率点上,这种频谱称为离散谱,是周期信号频谱的主要特点。f(t)波形变化越剧烈,所包含的高频分量的比重就越大;变化越平缓,所包含的低频分量的比重就越大。一般来说,将周期信号分解得到的三角函数形式的傅里叶级数的项数是无限的。也就是说,通常只有无穷项的傅里叶级数才能与原函数精确相等。但在实际应用中,显然无法取至无穷多项,而只能采用有限项级数来逼近无穷项级数。而且,所取项数越多,有限项级数就越逼近原函数,原函数与有限项级数间的方均误差就越小,而且低次谐波分量的系数不会因为所取项数的增加而变化。当选取22的傅里叶有限级数的项数越多,所合成的波形的峰起就越靠近f(t)的不连点。当所取得项数N 很大时,该峰起值趋于一个常数,约等于总跳变值的9%,这种现象称为Gibbs 现象。3. 主要仪器设备MATLAB软件二、 实验操作部分1. 实验数据、表格及数据处理2. 实验操作过程(可用图表示)3. 实验结论1. 实验操作过程1) 周期对称方波信号的合成图示方波既是一个奇对称信号,又是一个奇谐信号。根据函数的对称性与傅里叶系数的关系可知,它可以用无穷个奇次谐波分量的傅里叶级数来表示:ft=2Ek=0sin22k+1f0t.12k+1选取奇对称周期方波的周期T = 0.02s,幅度E = 6,请采用有限项级数替代无限项级数来逼近该函数。分别取前1、2、5 和100 项有限级数来近似,编写程序并把结果显示在一幅图中,观察它们逼近方波的过程。MATLAB 程序如下:%奇对称方波合成t=0:0.001:0.1;sishu=12/pi;y=sishu*sin(100*pi*t);subplot(221)plot(t,y);axis(0,0.1,-4,4);xlabel(time);ylabel(前1 项有限级数);y=sishu*(sin(100*pi*t)+sin(3*100*pi*t)/3);subplot(222);plot(t,y);axis(0,0.1,-4,4);xlabel(time);ylabel(前2 项有限级数);y=sishu*(sin(100*pi*t)+sin(3* 3100*pi*t)/3+sin(5*100*pi*t)/5+sin(7*100*pi*t)/7+sin(9*100*pi*t)/9);subplot(223)plot(t,y);axis(0,0.1,-4,4);xlabel(time);ylabel(前5 项有限级数);t=0:0.001:0.1;y=0;for i=1:100y=y+sishu*(sin(2*i-1)*100*pi*t)/(2*i-1);endsubplot(224);plot(t,y);axis(0,0.1,-4,4);xlabel(time);ylabel(前100 项有限级数);2)观察Gibbs 现象分别取前10、20、30 和40 项有限级数来逼近奇对称方波,观察Gibbs 现象。MATLAB 程序如下:%观察Gibbs 现象t=0:0.001:0.04;sishu=12/pi;y=0;for i=1:5y=y+sishu*(sin(2*i-1)*100*pi*t)/(2*i-1);endsubplot(221);plot(t,y);25axis(0,0.04,-4,4);xlabel(time);ylabel(前5 项有限级数);y=0;for i=1:6y=y+sishu*(sin(2*i-1)*100*pi*t)/(2*i-1);endsubplot(222);plot(t,y);axis(0,0.04,-4,4);xlabel(time);ylabel(前6 项有限级数);y=0;for i=1:7y=y+sishu*(sin(2*i-1)*100*pi*t)/(2*i-1);endsubplot(223)plot(t,y);axis(0,0.04,-4,4);xlabel(time);ylabel(前7 项有限级数);y=0;for i=1:8y=y+sishu*(sin(2*i-1)*100*pi*t)/(2*i-1);endsubplot(224);plot(t,y);axis(0,0.04,-4,4);xlabel(time);ylabel(前8 项有限级数);3)周期对称三角信号的合成设计采用有限项级数逼近偶对称周期三角信号的实验,编制程序并显示结果。 MATLAB程序如下:t=-0.1:0.001:0.1y=2/2+(4*2/(pi*pi)*cos(100*pi*t)subplot(2,2,1)plot(t,y)axis(0,0.1,0,2)xlabel(time)ylabel(qianyixiangjishu)y=2/2+(4*2/(pi*pi)*cos(100*pi*t)+(4*2/(pi*pi*3*3)*cos(300*pi*t)subplot(2,2,2)plot(t,y)axis(0,0.1,0,2)xlabel(time)ylabel(qiansanxiangxiangjishu)y=2/2+(4*2/(pi*pi)*cos(100*pi*t)+(4*2/(pi*pi*3*3)*cos(300*pi*t)+(4*2/(pi*pi*5*5)*cos(500*pi*t)+(4*2/(pi*pi*7*7)*cos(700*pi*t)+(4*2/(pi*pi*9*9)*cos(900*pi*t)subplot(2,2,3)plot(t,y)axis(0,0.1,0,2)xlabel(time)ylabel(qianyixiangjishu)t=0:0.001:0.1y=2/2for i=1:200 y=y+(4*2/(pi*pi)*sin(i*pi/2)*sin(i*pi/2)*cos(i*100*t)/(i*i)endsubplot(2,2,4)plot(t,y)axis(0,0.1,0,2)xlabel(time)ylabel(qiansanxiangxiangjishu)4)周期信号的频谱分析奇对称方波信号与偶对称三角信号的频谱,编制程序并显示结果,深入讨论周期信号的频谱特点和两信号频谱的差异。MATLAB程序如下:function = myfft()n = 1:50;E = 6;% 方波bn = E ./ n / pi .* (1 - cos(n * pi);an = zeros(1,length(bn);cn = sqrt(an.2 + bn.2); subplot(2,2,1)stem(cn);axis(0 50 0 4);title(奇对称方波幅度谱);subplot(2,2,3)stem(atan(-bn./an)title(奇对称方波相位谱);axis(0 50 -1.6 0);% 三角波an = (4 * E / pi / pi)./(n.2).*(sin(n*pi/2).2;bn = zeros(1,length(an);cn = sqrt(an.2+bn.2);cn(1) = E/2;subplot(2,2,2)stem(n,cn);axis(0 50 0 3);title(偶对称三角波幅度谱);subplot(2,2,4)stem(atan(-bn./an);axis(0 50 -1 1);title(偶对称三角波相位谱);end2. 实验数据1).周期对称方波信号的合成用MATLAB编程实现的方波方波信号的合成如下图所示:2).观察Gibbs现象3).周期对称三角信号 4).方波和三角波的频谱图3. 实验结论1).再用有限项级数合成周期信号时,所取级数项越多,有限项级数就越逼近原函数,且低次谐波分量的系数不会因为所取项数的增加而变化。2).由周期对称方波信号和三角波信号的频谱图,可以得到一下结论: 1.对于周期信号,其频谱图为离散的谱。具有离散谱线,即具有离散性;各个谐波的频率是基波w1的整数倍频率;高次谐波幅度渐小即具有收敛性。2.通过比较方波和三角波的频谱图可以得知,方波信号里的谐波分量比三角波的谐波分量多。所以方波的频谱图中在高频的区间含有较多的频谱分量,而三角波没有。三、 实验效果分析(包括仪器设备等使用效果)1 .在方波和三角波信号的合成实验中,通过取不同的有限项,并将其有限项级数函数画出来,观察得知,当N值取得较大时,其有限项级数比较逼近原函数,两者的方均误差较小。其中方波函数里包含的高频分量比较多,所以当N取值较小的时候,其接近峰值的区间存在较小的波形,而三角波在合成的过程中就

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论