基于西门子plc的恒压供水系统.doc_第1页
基于西门子plc的恒压供水系统.doc_第2页
基于西门子plc的恒压供水系统.doc_第3页
基于西门子plc的恒压供水系统.doc_第4页
基于西门子plc的恒压供水系统.doc_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于西门子plc的恒压供水系统设计 丽水学院2011届学生毕业论文摘要:本设计是针对居民生活用水而设计的。由变频器、PLC、PID调节器组成控制系统,调节水泵的输出流量。电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组的速度和切换,使系统运行在最合理状态,保证按需供水。本设计采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力凋节。经过PID运算,通过PLC控制变频与工频切换,实现闭环自动调节恒压变频供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点关键词:变频调速,恒压供水,PID控制系统,PLCAbstract:It is very important of the Water Supply System in Constant Pressure for the water supply in industrial and citizen existence. It is consist of the variable frequency and speed regulation, PLC, PID control system for the control system. It controls the outcome of the pumps. The generator pumps are consist of parallel three pumps, and the power come from variable frequency and speed regulation or power grid. According to the water supply of constant pressures outcome water press and flux, the control system control the variable frequency and speed regulation, parallel pumps speed and cut over, cause the system move in the best rational situation, assure according to wants supply water. This design has many merits such as save energy.In this paper,the control principle of VVVF providing-water system is introduced,we use PLC to carry on logic control and use inverter to modulate pressureThrough PID control principle .we realize Closed-loop control in VVVF Providing-water SystemThe result indicates that the system has the stable pressure,simple structure,and reliable workKeywords: Variable Frequency and Speed Regulation Water Supply of Constant Pressure PID Control System PLC第一章 绪论11.1恒压供水方案的意义11.2变频恒压供水系统的国内研究现状21.3课题来源及本文的主要研究内容31.4变频恒压供水系统的优点4第二章 恒压供水系统的分析52.1恒压供水系统的构成52.2 恒压控制的理论模型62.3供水系统的工作原理62.4系统功能分析82.5供水系统的基本特性8第三章 PID调节概念及基本原理103.1 PID调节概述103.1.1自动控制系统的分类103.2 PID控制的原理和特点113.2.1 PID控制的原理和特点的概念113.2.2 PID控制的分类113.2.3 PID控制器的参数设定123.3 PID控制算法123.4 PID参数整定的相关原则143.5 PID指令的使用注意事项153.6 PID回路类型的选择153.7 正作用或反作用回路16第四章 变频器的工作原理和控制方式174.1 变频器的工作原理174.2 变频器控制方式174.2.5矩阵式交交控制方式18第五章 系统的硬件设计205.1 系统的电气控制总框图205.2 PLC及其扩展模块的选型205.3 系统主电路分析及其设计215.3.1 主电路图215.3.2 控制电路图225.3.3 PLC外围电路连接235.4 系统的运行模式24第六章 恒压供水系统的程序设计256.1 PLC256.2 系统软件设计分析256.3 PLC程序设计266.3.1 控制系统主程序设计266.3.2 控制系统子程序设计29参考文献33结论34致谢35附录一:恒压供水系统模拟系统原理图36附录二:程序模块图37第一章 绪论变频调速技术是一种新型的、成熟的交流电机无级调速驱动技术,它以其独特优良的控制性被广泛应用在速度控制领域。特别是在供水行业中,由于生产安全和供水质量的特殊需要,对恒压供水压力有着严格要求,变频调速技术也得到了更加深入的应用。我们把水压力控制在一定量,采用变频调速控制是保证压力恒定有效的方法。据对供水区供水量的了解,发现全天各时段用水量变化较大,如果不对供水量进行调节,管网压力的波动也会很大,容易出现管网失压或爆管事故。采用变频恒压供水控制后,当用水量较小时,这时相应管道和泵出口压力均较大,变频恒压控制方式将会降低泵的频率,减小泵出水量,从而降低管网压力;反之亦然。这样,用水量变化较大也不会造成管网压力有较大的波动。变频调速实现恒压供水不仅保证厂内自用高压水足够且稳定,而且保证了供水的安全可靠性。1.1恒压供水方案的意义众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能使水管爆破和用水设备的损坏。在恒压供水技术出现以前,出现过许多供水方式。以下就逐一分析。(1)一台恒速泵直接供水系统这种供水方式,水泵从蓄水池中抽水加压直接送往用户,有的甚至连蓄水池也没有,直接从城市公用水网中抽水,严重影响城市公用管网压力的稳定。这种供水方式,水泵整日不停运转,有的可能在夜间用水低谷时段停止运行。这种系统形式简单、造价最低,但耗电、耗水严重,水压不稳,供水质量极差。(2)恒速泵加水塔的供水方式这种方式是水泵先向水塔供水,再由水塔向用户供水。水塔的合理高度是要求水塔最低水位略高于供水系统所需要压力。水塔注满后水泵停止,水塔水位低于某一位置时再启动水泵。水泵处于断续工作状态中。这种供水方式,水泵工作在额定流量额定扬程的条件下,水泵处于高效区。这种方式显然比前一种节电,其节电率与水塔容量、水泵额定流量、用水不均匀系数、水泵的开、停时间比、开、停频率等有关。供水压力比较稳定。但这种供水方式基建设备投资最大,占地面积也最大;水压不可调,不能兼顾近期与远期的需要;而且系统水压不能随系统所需流量和系统所需要压力下降而下降,故还存在一些能量损失和二次污染问题。而且在使用过程中,如果该系统水塔的水位监控装置损坏的话,水泵不能进行自动的开、停,这样水泵的开、停,将完全由人操作,这时将会出现能量的严。重浪费和供水质量的严重下降。(3)恒速泵加高位水箱的供水方式这种方式原理与水塔是相同的,只是水箱设在建筑物的顶层。高层建筑还可分层设立水箱。占地面积与设备投资都有所减少,但这对建筑物的造价与设计都有影响,同时水箱受建筑物的限制,容积不能过大,所以供水范围较小。一些动物甚至人都可能进入水箱污染水质。水箱的水位监控装置也容易损坏,这样系统的开、停,将完全由人操作,使系统的供水质量下降能耗增加。(4)恒速泵加气压罐供水方式这种方式是利用封闭的气压罐代替高位水箱蓄水,通过监测罐内压力来控制泵的开、停。罐的占地面积与水塔水箱供水方式相比较小,而且可以放在地上,设备的成本比水塔要低得多。而且气压罐是密封的,所以大大减少了水质因异物进入而被污染的可能性。但气压罐供水方式也存在着许多缺点。气压罐方式依靠压力罐中的压缩空气送水,气压罐配套水泵运行时,水泵在额定转速、额定流量的条件下工作。当系统所需水量下降时,供水压力将超出系统所需要的压力从而造成能量的浪费。同时水泵是工频率启动,且启动频繁,又会造成一定的能耗。频繁启动会造成系统的不稳定性。(5)变频调速供水方式这种系统的原理是通过安装在系统中的压力传感器将系统压力信号与设定压力值作比较,再通过控制器调节变频器的输出,无级调节水泵转速。使系统水压无论流量如何变化始终稳定在一定的范围内。变频调速式供水系统具有节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。1.2变频恒压供水系统的国内研究现状变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、起制动控制、压频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本Samco公司,就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循环方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。原深圳华为(现己更名为艾默生)电气公司和成都希望集团(森兰变频器)也推出了恒压供水专用变频器,无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所1。可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.3课题来源及本文的主要研究内容本课题来源于生产、生活供水的实际应用。本系统是三泵生活/消防双恒压供水系统,变频恒压供水系统主要由变频器、可编程控制器、压力传感器组成。本文研究的目标是对恒压控制技术给予提升,使系统的稳定性和节能效果进一步提高,操作更加简捷,故障报警及时迅速。该系统可以生活供水和消防供水的双用供水系统1.4变频恒压供水系统的优点相对与传统的加压供水方式,变频恒压供水系统的优点突出的体现在以下几个方面:1、高效节能。变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。2、恒压供水。变频恒压供水系统实现了系统供水压力稳定而流量可在大范围内连续变化,从而可以保证用户任何时候的用水压力,不会出现在用水高峰期热水器不能正常使用的情况。3、安全卫生。系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。4、自动运行、管理简便。新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、低液位保护、主泵定时轮换控制、密码设定等功能,功能完善,全自动控制,自动运行,泵房不设岗位,只需派人定期检查、保养。5、延长设备寿命、保护电网稳定。使用变频器后,机泵的转速不再是长期维持额定转速运行,减少了机械磨损,降低了机泵故障率,而且主泵定时轮换控制功能自动定时轮换主泵运行,保证各泵磨损均匀且不锈死,延长了机泵使用寿命。变频器的无级调速运行,实现了机泵软启动,避免了电机开停时的大电流对电机线圈和电网的冲击,消除了水泵的水锤效应。6、占地少、投资回收期短。新型的小区变频恒压供水系统采用水池上直接安装立式泵,控制间只要安放一到两个控制柜,体积很小,整个系统占地就非常小,可以节省投资。另外不用水塔或天面水池、控制间不设专人管理、设备故障率极低等方面都实现了进一步减少投资,运行管理费低的特点,再加上变频供水的节能优点,都决定了小区变频恒压供水系统的投资回收期短,一般约2年。第二章 恒压供水系统的分析2.1恒压供水系统的构成由于本设计的供水系统要适用生活水、消防用水等场合的供水,密闭的水池在地下主要为应急用水的缓冲,还可以避免以往方案引起的二次污染。系统采用了水泵,一台PLC,一台变频器和压力传感器组成的供水系统,当用水量很少时只开动辅助泵即可,系统检测到管压很低实会自动增加泵的数量或加快抽水速度的同时会关闭辅助泵,以满足用水需求;反之,会自动减泵或降低抽水速度。其原理框图如图2-1所示 图2-1 变频恒压供水系统的总体框图整个系统以PLC为核心,完成系统的控制功能。它主要负责将压力传感器传送来的标准电流信号与其内部预先设定好的初值进行比较,若两个值存在偏差,它就会输出一个标准的电流控制信号,传送给变频器的模拟量调节控制端。变频器根据送来的电流值的大小,产生一个与之对应的控制水泵速度的频率值,使水泵的供电频率发生变化,改变了水泵的运转速度,从而改变了向管道供水的压力大小,使管道的实际水压值恢复到预先设定好的值上。2.2 恒压控制的理论模型对变频恒压供水的主要特点进行分析,我们可以得出如下结论:变频调速恒压供水系统控制对象是一个时变的、非线性的、滞后的、模型不稳定的对象。对它的控制仍属于工业过程控制的范畴,它以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数3。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上。变频恒压控制的原理图2-2如下:图2-2 变频恒压控制原理图从恒压控制的原理图中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵机组的转速减小,实际供水压力因此而减小。同样,最后调节的结果是实际供水压力和设定压力相等。2.3供水系统的工作原理该系统具有手动和自动两种运行方式:1.手动运行方式。选择此方式时,按启动按钮泵或停止按钮,可根据需要而分别启停各水泵。这种方式仅供检修或控制系统出现故障时使用。2.自动运行方式(1)启动程序。在自动运行方式下开始启动运行时,首先检测水池水位,若水池水位符合设定水位要求,辅助泵首先启动,如果检测到压力不合要求,再将变频交流接触器吸合,电机与变频器连通,水泵变频启动,变频器输出频率从0Hz开始上升,此时压力变送器检测压力信号反馈PLC,由PLC经PID运算后控制变频器的频率输出;如压力不够,则频率上升至50Hz,延时一定时间后,将变频泵切换为工频,另一变频交流接触器吸合,变频启动水泵,频率逐渐上升,直至出水压力达到设定压力,依次类推增加水泵。(2)水泵切换程序。如用水量减小,出水压力超过设定压力,则PLC控制变频器降低输出频率,减少出水量来稳定出水压力。若变频器输出频率低于某一设定值(水泵出水频率,一般为25Hz),而出水压力仍高于设定压力值时,PLC开始计时,若在一定时间内,出水压力降低到设定压力,PLC放弃计时,继续变频调速运行;若在一定时间内出水压力仍高于设定压力,根据先投先停的原则,PLC将停止正在运行的水泵中运行时间最长的工频泵,直至出水压力达到设定值。(3)启动小流量泵。对于居民生活供水或其它用水时段性较强的供水系统,可设置一台小流量水泵。例如在晚上12点到凌晨5点,居民生活用水很少,一台15kW的水泵为了维持供水压力也需要长时间工作在25Hz左右,电动机不仅要消耗十几个千瓦的电能,同时还要长期工作在低频状态,大大影响电动机的寿命。若系统中设置一台5KW左右的小流量水泵,为了维持出水压力,由小流量水泵变频工作,不仅电动机工作在较高频率,而且消耗的电能也很小。在小流量水泵的选择上,其功率一般是主水泵功率的1/4到1/6,扬程和主泵相同。(4)水池水位检测。在自动供水的过程中,PLC实时检测水池水位,若水位低于设定的报警水位时,蜂鸣器发出缺水报警信号;若水位低于设定的停机水位时,停止全部水泵工作,防止水泵干抽,并发出停机报警信号;若水池水位高于设定的水池上限水位时,自动关断水池给水管电动阀门。(5)自动启动。有时电源会突然断电,若无人值班,恢复供电后若系统无法启动会造成断水,为此本系统设置了通电后自动变频启动方式。在电源恢复后,PLC会发出指令,蜂鸣器发出警告,然后按自动运行方式变频启动1#泵,直到稳定地运行在给定水压值。(6)消防报警。当出现消防报警信号时,系统立即按照消防压力运行。(7) 故障处理。变频故障从冗余设计原则考虑,在变频器发生故障时也要不间断供水。当变频器突然发生故障,蜂鸣器报警,PLC发指令使全部水泵停机,然后1#泵工频运行(若水泵功率大于37KW,则需要采用降压启动或其它启动方式),经一定延时后根据压力变化情况再使2#泵工频运行。此时,PLC切换泵则根据实际水压的变化在工频泵间切换。当出现水池无水停机、电动机欠压、过压、错相、电机故障等情况时,均能由蜂鸣器发出警报声。条件许可时可以添加MODEM模块,在变频器、电动机发生故障时能通过远程通信口拨叫值班人员电话,通知有关人员前来维修。所有故障解决、恢复正常后,自启动前也要发出报警信号。2.4系统功能分析 三台泵生活/消防双恒压供水系统的基本功能为:(1)生活供水时,系统低恒压值运行,消防供水时高恒压值运行。(2)三台泵根据恒压的需要采取“先开先停”的原则接入和退出。(3)在用水量小的情况下,如果一台泵连续运行时间超过3h,则要切换下即系统具有“倒泵功能”,避免某一台泵工作时间过长。(4)三台泵在启动时都要有软启动功能。(5)要有完善的报警功。(6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。2.5供水系统的基本特性 供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图2-3的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。图2-3 供水系统的基本特性第三章 PID调节概念及基本原理3.1 PID调节概述目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。现阶段PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能3.1.1自动控制系统的分类开环控制系统: 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。闭环控制系统:闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。3.2 PID控制的原理和特点3.2.1 PID控制的原理和特点的概念 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。3.2.2 PID控制的分类 1、 比例(P)控制比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 2、积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 3、微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。3.2.3 PID控制器的参数设定PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。3.3 PID控制算法PID控制算法的一般形式PID控制器根据日标值(设定值)r(t)与反馈值(测量值)c(t)构成的控制偏差: e(t)=r(t)-c(t)将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对受控对象进行控制。其控制规律为:或 式中Kp: 调节器的比例系数Ti: 调节器的积分时间Td: 调节器的微分时间e: 调节器的偏差信号: 比例带,它是惯用增益的倒数u: 输出简单来说 ,PID控制器各校正环节的作用是这样的:1、比例环节: 即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用以减小误差。2、积分环节 :主要用于消除静差,提高系统的无差度,积分作用的强弱取决于积分时间常数Ti, Ti越大,积分作用越弱,反之则越强。3、微分环节 :能反应偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。PID调节器的传递函数是:当上述控制算法公式只包含第一项时,称为比例(P)作用,只包含第二项时,称为积分(I)作用;但只包含第三项的单纯微分(D)作用是不采用的,因为它不能起到使被控变量接近设定值的效果,只包含第一、二项的是PI作用;只包含第一、三项的是PD作用;同时包含这三项的是PID作用。仅用P动作控制,不能完全消除偏差。为了消除残留偏差,一般采用增加I动作的PI控制。用PI控制时,能消除由改变目标值和经常的外来扰动等引起的偏差。但是,I动作过强时,对快速变化偏差响应迟缓。对有积分元件的负载系统可以单独使用P动作控制。对于PID控制,发生偏差时,很快产生比单独D动作还要大的操作量,以此来抑制偏差的增加。偏差小时,P动作的作用减小。控制对象含有积分元件的负载场合,仅P动作控制,有时由于此积分元件的作用,系统发生振荡。在该场合,为使P动作的振荡衰减和系统稳定,可用PD控制。换言之,该种控制方式适用于过程本身没有制动作用的负载。利用I动作消除偏差作用和用D动作抑制振荡作用,在结合P动作就构成了PID控制,本系统就是采用了这种方式。采用PID控制较其它组合控制效果要好,基本上能获得无偏差、精度高和系统稳定的控制过程。这种控制方式用于从产生偏差到出现响应需要一定时间的负载系统(即实时性要求不高,工业上的过程控制系统一般都是此类系统,本系统也比较适合PID调节)效果比较好。3.4 PID参数整定的相关原则针对一个具体的系统,设置和调整PID参数,使调节过程达到满意的品质,称为参数整定,不管是用常规调节器还是数字PID调节器,统称为调节器参数整定。下面简单列举一些的准则:1、 如果广义对象的传递函数是,调节器的比例增益是整个系统总的开环增益是。在其他因素相同的情况下,当大的时候,应该小一些,小的时候,应该大一些。2、 在动态参数方面,可取 作为特征值越大,系统越不易稳定,因此应该小一些。同时,和也应取适当的数值。经验上常取为2左右,为0。5左右。因此,如有T的估计值,和值就不难定出了。3、在 P,I,D 三个作用中,P作用往往是最基本的控制作用。由这一点出发,可从两条途径之一进行现场凑试:(1)先用单纯的P作用,选出合适的值,作为基础,然后适当引入和, Ti和Td值进行挑选。(2)依据验前知识(如对T的了解),把Ti和Td置于合适的数值,然后主要对值进行凑试,得出最合宜的数值。以上两条途径表面上看来截然相反,但它们都是以承认P作用为主体作为前提的。4、积分(I)作用的引入既有利又有弊。必须尽量发挥它能消除余差的利,尽量缩小它不利于稳定的弊。一般取=(0。51), (是振荡周期)。在以上情况下,由I作用引起的相位滞后不超过400,幅值比增加不超过20%。即使如此,在引入I作用后,应比单纯P作用时减小10%左右。5、对于含有噪音的过程,不宜引入微分作用,否则高频分量放大得很厉害。6、 在控制品质方面,稳定性的要求是前提。如果只有一个调节器参数可以调整,则只能满足一个品质指示,通常就取衰减比作为指标。如果有两个参数可以调整,在可在衰减比之外,再添加一个指标。3.5 PID指令的使用注意事项PID控制器的选取:PID控制器的性能和处理速度只与所采用的CPU的性能有关。对于任意给定的CPU,控制器的数量和每个控制器被调用的频率是相互矛盾的。控制环执行的速度,也即在每个时间单元内操作值必须被更新的频率决定了可以安装的控制器的数量。对要控制的过程类型没有限制,迟延系统(温度、液位等)和快速系统(流量、电机转速等)都可以作为被控对象。过程分析时应注意:控制过程的静态性能(比例)和动态性能(时间延迟、死区和重设时间等)对被控过程控制器的构造和设计以及静态(比例)和动态参量(积分和微分)的维数选取有着很大的影响。准确地了解控制过程的类型和特性数据是非常必要的。控制器选取时应注意:控制环的特性由被控过程或被控机械的物理特性决定,并且设计中可以改变的程度不是很大。只有选用了最适合被控对象的控制器并使其适应过程的响应时间,才能得到较高的控制质量。不用通过编程就可以生成控制器的大部分功能(构造、参数设置和在程序中的调用等),前提是必须已经掌握编程基础知识。3.6 PID回路类型的选择 在许多控制系统中,只需要一种或两种回路控制类型。例如只需要比例回路或者比例积分回路。通过设置常量参数可先选用想要的回路控制类型。 如果不想要积分回路,可以把积分时间设为无穷大。即使没有积分作用,积分项还是不为0因为有初值MX,但积分作用可以忽略。如果不想要微分回路,可以把微分时间设为0,如果不想要比例回路,但需要积分或微分回路,分项和微分项时,把增益当作1看待。3.7 正作用或反作用回路如果增益为正,那么该回路为正作用回路。如果增益为负,那么是反作用回路。对于增益为正的积分或微分控制来说,如果指定积分时间、微分时间为正,就是正作用回路;指定为负,则为反作用回路。第四章 变频器的工作原理和控制方式随着电力电子技术、微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频调速越来越被工业上所采用,尤其是自动化工业生产中应用更为广泛。 4.1 变频器的工作原理 交流电动机的同步转速表达式为: n60 f(1s)/p (4-1) 式中 n异步电动机的转子转速; f异步电动机的电源频率; s电动机转差率; p电动机极对数。 由式(3-1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在050Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 4.2 变频器控制方式 低压通用变频输出电压为380650V,输出功率为0.75400kW,工作频率为0400Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。4.2.1 U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低, 动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 4.2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 4.2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 4.2.4直接转矩控制(DTC)方式 1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 4.2.5矩阵式交交控制方式 VVVF变频、矢量控制变频、直接转矩控制变频都是交直交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交交变频应运而生。由于矩阵式交交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是: 控制定子磁链引入定子磁链观测器,实现无速度传感器方式; 自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别; 算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制; 实现BandBand控制按磁链和转矩的BandBand控制产生PWM信号,对逆变器开关状态进行控制。 矩阵式交交变频具有快速的转矩响应(2ms),很高的速度精度(2,无PG反馈),高转矩精度(3);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150200转矩。第五章 系统的硬件设计5.1 系统的电气控制总框图根据基于PLC的变频恒压供水系统的原理,系统的电气控制总框图如图5-1所示:图5-1 系统的电气控制总框图由以上系统电气总框图可以看出,该系统的主要硬件设备应包括以下几部分:(1) PLC及其扩展模块、(2) 变频器、(3) 水泵机组、(4) 压力变送器、(5) 液位变送器。5.2 PLC及其扩展模块的选型PLC是整个变频恒压供水控制系统的核心,它要完成对系统中所有输入号的采集、所有输出单元的控制、恒压的实现以及对外的数据交换。因此我们在选择PLC时,要考虑PLC的指令执行速度、指令丰富程度、内存空间、通讯接口及协议、带扩展模块的能力和编程软件的方便与否等多方面因素。由于恒压供水自动控制系统控制设备相对较少,因此PLC选用德国SIEMENS公司的S7-200型。S7-200型PLC的结构紧凑,价格低廉,具有较高的性价比,广泛适用于一些小型控制系统。SIEMENS公司的PLC具有可靠性高,可扩展性好,又有较丰富的通信指令,且通信协议简单等优点;PLC可以上接工控计算机,对自动控制系统进行监测控制。PLC和上位机的通信采用PC/PPI电缆,支持点对点接口(PPI)协议,PC/PPI电缆可以方便实现PLC的通信接口RS485到PC机的通信接口RS232的转换,用户程序有三级口令保护,可以对程序实施安全保护。根据控制系统实际所需端子数目,考虑PLC端子数目要有一定的预留量,因此选用的S7-200型PLC的主模块为CPU226,其开关量输出为16点,输出形式为AC220V继电器输出;开关量输入CPU226为24点,输入形式为+24V直流输入。由于实际中需要模拟量输入点1个,模拟量输出点1个,所以需要扩展,扩展模块选择的是EM235,该模块有4个模拟输入(AIW),1个模拟输出(AQW)信号通道。输入输出信号接入端口时能够自动完成A/D的转换,标准输入信号能够转换成一个字长(16bit)的数字信号;输出信号接出端口时能够自动完成D/A的转换,一个字长(16bit)的数字信号能够转换成标准输出信号。EM235模块可以针对不同的标准输入信号,通过DIP开关进行设置。5.3 系统主电路分析及其设计5.3.1 主电路图系统电气主电路图如图5-2所示图5-2 系统电气主电路图在主电路中,M1M3分别为1号3号水泵的电动机,控制三台电动机M1、M2、M3的交流接触器为KM1、KM3、 KM5和 KM2、 KM4、 KM6.前者控制1号3号水泵的电动机在工频下运行,而后者则控制1号3号水泵的电动机在变频下运行。FR1、FR2 、FR3分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论