高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_2 直接证明与间接证明课件 理 新人教版_第1页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_2 直接证明与间接证明课件 理 新人教版_第2页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_2 直接证明与间接证明课件 理 新人教版_第3页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_2 直接证明与间接证明课件 理 新人教版_第4页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_2 直接证明与间接证明课件 理 新人教版_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13 2直接证明与间接证明 基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 直接证明 知识梳理 1 综合法 定义 一般地 利用已知条件和某些数学定义 公理 定理等 经过一系列的 最后推导出所要证明的结论成立 这种证明方法叫做综合法 框图表示 其中P表示已知条件 已有的定义 公理 定理等 Q表示所要证明的结论 思维过程 由因导果 推理论证 2 分析法 定义 一般地 从出发 逐步寻求使它成立的 直至最后 把要证明的结论归结为判定一个明显成立的条件 已知条件 定理 定义 公理等 为止 这种证明方法叫做分析法 其中Q表示要证明的结论 思维过程 执果索因 要证明的结论 充分条件 2 间接证明 反证法 一般地 假设原命题 即在原命题的条件下 结论不成立 经过正确的推理 最后得出 因此说明假设错误 从而证明的证明方法 不成立 矛盾 原命题成立 判断下列结论是否正确 请在括号中打 或 1 综合法是直接证明 分析法是间接证明 2 分析法是从要证明的结论出发 逐步寻找使结论成立的充要条件 3 用反证法证明结论 a b 时 应假设 a b 4 反证法是指将结论和条件同时否定 推出矛盾 5 在解决问题时 常常用分析法寻找解题的思路与方法 再用综合法展现解决问题的过程 6 证明不等式最合适的方法是分析法 考点自测 1 若a b c为实数 且a b 0 则下列命题正确的是 答案 解析 a2 ab a a b a0 a2 ab 又ab b2 b a b 0 ab b2 由 得a2 ab b2 2 2016 北京 袋中装有偶数个球 其中红球 黑球各占一半 甲 乙 丙是三个空盒 每次从袋中任意取出两个球 将其中一个球放入甲盒 如果这个球是红球 就将另一个球放入乙盒 否则就放入丙盒 重复上述过程 直到袋中所有球都被放入盒中 则A 乙盒中黑球不多于丙盒中黑球B 乙盒中红球与丙盒中黑球一样多C 乙盒中红球不多于丙盒中红球D 乙盒中黑球与丙盒中红球一样多 答案 解析 取两个球往盒子中放有4种情况 红 红 则乙盒中红球数加1 黑 黑 则丙盒中黑球数加1 红 黑 红球放入甲盒中 则乙盒中黑球数加1 黑 红 黑球放入甲盒中 则丙盒中红球数加1 因为红球和黑球个数一样 所以 和 的情况一样多 和 的情况完全随机 和 对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响 和 出现的次数是一样的 所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样 综上选B 3 要证a2 b2 1 a2b2 0 只要证明 a2 b2 1 a2b2 0 a2 1 b2 1 0 答案 解析 a 0 b 0且a b 答案 解析 答案 解析 f x sinx在区间 0 上是凸函数 且A B C 0 题型分类深度剖析 题型一综合法的应用 例1 2016 重庆模拟 设a b c均为正数 且a b c 1 证明 1 ab bc ac 证明 由a2 b2 2ab b2 c2 2bc c2 a2 2ac 得a2 b2 c2 ab bc ca 由题设得 a b c 2 1 即a2 b2 c2 2ab 2bc 2ca 1 证明 1 综合法是 由因导果 的证明方法 它是一种从已知到未知 从题设到结论 的逻辑推理方法 即从题设中的已知条件或已证的真实判断 命题 出发 经过一系列中间推理 最后导出所要求证结论的真实性 2 综合法的逻辑依据是三段论式的演绎推理 思维升华 跟踪训练1对于定义域为 0 1 的函数f x 如果同时满足 对任意的x 0 1 总有f x 0 f 1 1 若x1 0 x2 0 x1 x2 1 都有f x1 x2 f x1 f x2 成立 则称函数f x 为理想函数 1 若函数f x 为理想函数 证明 f 0 0 证明 取x1 x2 0 则x1 x2 0 1 f 0 0 f 0 f 0 f 0 0 又对任意的x 0 1 总有f x 0 f 0 0 于是f 0 0 解答 对于f x 2x x 0 1 f 1 2不满足新定义中的条件 f x 2x x 0 1 不是理想函数 对于f x x2 x 0 1 显然f x 0 且f 1 1 f x x2 x 0 1 是理想函数 综上 f x x2 x 0 1 是理想函数 对任意的x1 x2 0 1 x1 x2 1 即f2 x1 x2 f x1 f x2 2 f x1 x2 f x1 f x2 不满足条件 例2 题型二分析法的应用 证明 所以cosx1cosx2 0 sin x1 x2 0 1 cos x1 x2 0 故只需证明1 cos x1 x2 2cosx1cosx2 即证1 cosx1cosx2 sinx1sinx2 2cosx1cosx2 即证cos x1 x2 1 引申探究 证明 由于x1 x2 R时 0 0 1 逆向思考是用分析法证题的主要思想 通过反推 逐步寻找使结论成立的充分条件 正确把握转化方向是使问题顺利获解的关键 2 证明较复杂的问题时 可以采用两头凑的办法 即通过分析法找出某个与结论等价 或充分 的中间结论 然后通过综合法证明这个中间结论 从而使原命题得证 思维升华 跟踪训练2 2017 重庆月考 设a 0 b 0 2c a b 求证 1 c2 ab 证明 证明 a c 2 c2 ab a a b 2c 0成立 原不等式成立 题型三反证法的应用 命题点1证明否定性命题例3等差数列 an 的前n项和为Sn a1 1 S3 9 3 1 求数列 an 的通项an与前n项和Sn 解答 2 设bn n N 求证 数列 bn 中任意不同的三项都不可能成为等比数列 证明 假设不成立 即数列 bn 中任意不同的三项都不可能成为等比数列 命题点2证明存在性问题例4 2016 济南模拟 若f x 的定义域为 a b 值域为 a b a b 则称函数f x 是 a b 上的 四维光军 函数 解答 由题设得g x x 1 2 1 其图象的对称轴为x 1 区间 1 b 在对称轴的右边 所以函数在区间 1 b 上单调递增 由 四维光军 函数的定义可知 g 1 1 g b b 因为b 1 所以b 3 2 是否存在常数a b a 2 使函数h x 是区间 a b 上的 四维光军 函数 若存在 求出a b的值 若不存在 请说明理由 解答 解得a b 这与已知矛盾 故不存在 命题点3证明唯一性命题例5已知M是由满足下述条件的函数构成的集合 对任意f x M 方程f x x 0有实数根 函数f x 的导数f x 满足0 f x 1 解答 当x 0时 f 0 0 所以方程f x x 0有实数根0 2 集合M中的元素f x 具有下面的性质 若f x 的定义域为D 则对于任意 m n D 都存在x0 m n 使得等式f n f m n m f x0 成立 试用这一性质证明 方程f x x 0有且只有一个实数根 证明 假设方程f x x 0存在两个实数根 则f 0 f 0 不妨设 根据题意存在c 满足f f f c 因为f f 且 所以f c 1 与已知0 f x 1矛盾 又f x x 0有实数根 所以方程f x x 0有且只有一个实数根 应用反证法证明数学命题 一般有以下几个步骤 第一步 分清命题 p q 的条件和结论 第二步 作出与命题结论q相反的假设綈q 第三步 由p和綈q出发 应用正确的推理方法 推出矛盾结果 第四步 断定产生矛盾结果的原因在于开始所作的假设綈q不真 于是原结论q成立 从而间接地证明了命题p q为真 所说的矛盾结果 通常是指推出的结果与已知公理 已知定义 已知定理或已知事实矛盾 与临时假设矛盾以及自相矛盾等都是矛盾结果 思维升华 跟踪训练3已知二次函数f x ax2 bx c a 0 的图象与x轴有两个不同的交点 若f c 0 且00 证明 f x 的图象与x轴有两个不同的交点 f x 0有两个不等实根x1 x2 f c 0 x1 c是f x 0的根 证明 典例 12分 直线y kx m m 0 与椭圆W y2 1相交于A C两点 O是坐标原点 1 当点B的坐标为 0 1 且四边形OABC为菱形时 求AC的长 2 当点B在W上且不是W的顶点时 证明 四边形OABC不可能为菱形 反证法在证明题中的应用 思想与方法系列26 思想方法指导 规范解答 在证明否定性问题 存在性问题 唯一性问题时常考虑用反证法证明 应用反证法需注意 1 掌握反证法的证明思路及证题步骤 正确作出假设是反证法的基础 应用假设是反证法的基本手段 得到矛盾是反证法的目的 2 当证明的结论和条件联系不明显 直接证明不清晰或正面证明分类较多 而反面情况只有一种或较少时 常采用反证法 3 利用反证法证明时 一定要回到结论上去 返回 1 解因为四边形OABC为菱形 则AC与OB相互垂直平分 由于O 0 0 B 0 1 2 证明假设四边形OABC为菱形 因为点B不是W的顶点 且AC OB 所以k 0 设A x1 y1 C x2 y2 则 因为M为AC和OB的交点 且m 0 k 0 所以OABC不是菱形 与假设矛盾 所以当点B不是W的顶点时 四边形OABC不可能是菱形 12分 返回 课时作业 1 2017 泰安质检 用反证法证明命题 设a b为实数 则方程x2 ax b 0至少有一个实根 时 要做的假设是A 方程x2 ax b 0没有实根B 方程x2 ax b 0至多有一个实根C 方程x2 ax b 0至多有两个实根D 方程x2 ax b 0恰好有两个实根 答案 解析 因为 方程x2 ax b 0至少有一个实根 等价于 方程x2 ax b 0有一个实根或两个实根 所以该命题的否定是 方程x2 ax b 0没有实根 故选A 1 2 3 4 5 6 7 8 9 10 11 12 13 2 2016 山西质量监测 对累乘运算 有如下定义 ak a1 a2 an 则下列命题中的真命题是 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 当且仅当x y z时等号成立 答案 解析 A 都大于2B 至少有一个大于2C 至少有一个不小于2D 至少有一个不大于2 所以三个数中至少有一个不小于2 故选C 1 2 3 4 5 6 7 8 9 10 11 12 13 4 已知p3 q3 2 证明 p q 2 用反证法证明时 可假设p q 2 若a b R a b 1 求证 方程x2 ax b 0的两根的绝对值都小于1 用反证法证明时可假设方程有一根x1的绝对值大于或等于1 即假设 x1 1 以下结论正确的是A 与 的假设都错误B 的假设正确 的假设错误C 与 的假设都正确D 的假设错误 的假设正确 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 对于 结论的否定是p q 2 故 中的假设错误 对于 其假设正确 故选D 5 设a b是两个实数 给出下列条件 a b 1 a b 2 a b 2 a2 b2 2 ab 1 其中能推出 a b中至少有一个大于1 的条件是A B C D 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 但a 1 b 1 故 推不出 若a b 1 则a b 2 故 推不出 若a 2 b 3 则a2 b2 2 故 推不出 若a 2 b 3 则ab 1 故 推不出 对于 即a b 2 则a b中至少有一个大于1 1 2 3 4 5 6 7 8 9 10 11 12 13 反证法 假设a 1且b 1 则a b 2与a b 2矛盾 因此假设不成立 a b中至少有一个大于1 1 2 3 4 5 6 7 8 9 10 11 12 13 6 2016 河南三市联考 设n为正整数 f n 1 计算得f 2 f 4 2 f 8 f 16 3 观察上述结果 按照上面规律 可推测f 128 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 7 2016 全国甲卷 有三张卡片 分别写有1和2 1和3 2和3 甲 乙 丙三人各取走一张卡片 甲看了乙的卡片后说 我与乙的卡片上相同的数字不是2 乙看了丙的卡片后说 我与丙的卡片上相同的数字不是1 丙说 我的卡片上的数字之和不是5 则甲的卡片上的数字是 答案 解析 1和3 1 2 3 4 5 6 7 8 9 10 11 12 13 由丙说 我的卡片上的数字之和不是5 可知 丙为 1和2 或 1和3 又乙说 我与丙的卡片上相同的数字不是1 所以乙只可能为 2和3 又甲说 我与乙的卡片上相同的数字不是2 所以甲只能为 1和3 1 2 3 4 5 6 7 8 9 10 11 12 13 若二次函数f x 0在区间 1 1 内恒成立 8 若二次函数f x 4x2 2 p 2 x 2p2 p 1 在区间 1 1 内至少存在一点c 使f c 0 则实数p的取值范围是 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 所以要证的不等式成立 1 2 3 4 5 6 7 8 9 10 11 12 13 10 设f x ax2 bx c a 0 若函数f x 1 与f x 的图象关于y轴对称 求证 f x 为偶函数 证明 由函数f x 1 与f x 的图象关于y轴对称 可知f x 1 f x 1 2 3 4 5 6 7 8 9 10 11 12 13 1 证明 函数f x 在 1 上为增函数 证明 1 2 3 4 5 6 7 8 9 10 11 12 13 任取x1 x2 1 又 x1 1 0 x2 1 0 不妨设x10 1 2 3 4 5 6 7 8 9 10 11 12 13 故函数f x 在 1 上为增函数 1 2 3 4 5 6 7 8 9 10 11 12 13 2 用反证法证明方程f x 0没有负数根 证明 假设存在x0 0 x0 1 满足f x0 0 a 1 0 1 故方程f x 0没有负数根 1 2 3 4 5 6 7 8 9 10 11 12 13 12 2015 陕西 设fn x 是等比数列1 x x2 xn的各项和 其中x 0 n N n 2 1 2 3 4 5 6 7 8 9 10 11 12 13 证明 Fn x fn x 2 1 x x2 xn 2 则Fn 1 n 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 又F n x 1 2x nxn 1 0 x 0 因为xn是Fn x 的零点 所以Fn xn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 2 设有一个与上述等比数列的首项 末项 项数分别相同的等差数列 其各项和为gn x 比较fn x 与gn x 的大小 并加以证明 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 设h x fn x gn x 1 x x2 xn x 0 当x 1时 fn x gn x 1 2 3 4 5 6 7 8 9 10 11 12 13 所以h x 在 0 1 上递增 在 1 上递减 所以h x h 1 0 即fn x gn x 综上所述 当x 1时 fn x gn x 当x 1时 fn x gn x 1 2 3 4 5 6 7 8 9 10 11 12 13 方法二由题设 fn x 1 x x2 xn 当x 1时 fn x gn x 当x 1时 用数学归纳法可以证明fn x gn x 所以f2 x g2 x 成立 假设n k k 2 时 不等式成立 即fk x gk x 1 2 3 4 5 6 7 8 9 10 11 12 13 那么 当n k 1时 fk 1 x fk x xk 1 gk x xk 1 令hk x kxk 1 k 1 xk 1 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 则h k x k k 1 xk k k 1 xk 1 k k 1 xk 1 x 1 故fk 1 x gk 1 x 即n k 1时不等式也成立 所以当0 x 1时 h k x 0 hk x 在 0 1 上递减 当x 1时 h k x 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论