二次函数(复习)2.doc_第1页
二次函数(复习)2.doc_第2页
二次函数(复习)2.doc_第3页
二次函数(复习)2.doc_第4页
二次函数(复习)2.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数(2)知识精要利用二次函数求最值的方法1. 配方法可将一般式(a0)通过配方变形为顶点式y=a(xh)2+k的形式.当时,且当 时,有最 值是 ;当时,且当 时,有最 值是 .2. 公式法直接用配方法可得结论.当时,且当 时,有最 值是 ;当时,且当 时,有最 值是 .典例讲解及思维拓展例1某商店经销一种销售成本为每千克40元的水产品,据市场分析,按每千克50元销售,一个月能售出500千克;若销售单价每涨1元,月销售量就减少10千克(1)当销售单价定为每千克65元时,计算月销售量和月销售利润;(2)求月销售利润y(元)与销售单价x(元/千克)(x50)之间的函数关系式;(3)当销售单价定为多少元时,可以获得最大月销售利润?最大月销售利润是多少?(4)月销售利润能达到10000元吗?请说明你的理由练习和拓展及思维能力提升1某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润例2.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?OxyABC(第1题)练习和拓展及思维能力提升21.如图,某涵洞的截面是抛物线形,现测得水面宽AB1.6m,涵洞顶点O到水面的距离CO为2.4m,在图中直角坐标系内,涵洞截面所在抛物线的解析式是_ _2.杂技团进行杂技表演,演员从跷跷板右端处弹跳到人梯顶端椅子处,其身体(看成一点)的路线是抛物线的一部分,如图(1)求演员弹跳离地面的最大高度;(2)已知人梯高米,在一次表演中,人梯到起跳点的水平距离是4米,问这次表演是否成功?3.某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)(1)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 / ,求购买地毯需多少元?(2)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并增加铺设斜面EG和HF,已知矩形EFGH的周长为27.5 m, 求增加斜面的长。例3.如图所示,要在底边BC=160cm,高AD=120cm的ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)设矩形EFGH的面积为S,确定S与x的函数关系式; (3)当x为何值时,矩形EFGH的面积为S最大?练习和拓展及思维能力提升31.小明在某次投篮中,球的运动路线是抛物线的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L是( )A、4.6mB、4.5mC、4mD、3.5m2. 如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃. 设矩形的一边为面积为(m2),求关于的函数关系式,并写出自变量的取值范围; 当为何值时,所围苗圃的面积最大,最大面积是多少?巩固练习1. 向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a0)若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是第( )秒A8 B10 C12 D152. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.3.小汽车刹车距离(m)与速度(km/h)之间的函数关系式为,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车 有危险(填“会”或“不会”).4. 某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-5t2+150t+10表示经过_s,火箭达到它的最高点5. 如图,在中,动点从点开始沿边向以的速度移动(不与点重合),动点从点开始沿边向以的速度移动(不与点重合)如果、分别从、同时出发,那么经过_秒,四边形的面积最小6. 休闲广场要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?7. 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m。(1)在如图所示的直角坐标系中,求出该抛物线的解析式。(2)在正常水位的基础上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论